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Abstract: Will new technologies cause industries to shed jobs, requiring novel policies to 
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century or more; only later did productivity gains bring declining employment. What 
changed? The elasticity of demand. Using data over two centuries for US textile, steel, and 
auto industries, this paper shows that automation initially spurred job growth because 
demand was highly elastic. But demand later became satiated, leading to job losses. A simple 
model explains why this pattern might be common, suggesting that today’s technologies may 
cause some industries to decline and others to grow. Automation might not cause mass 
unemployment, but it may well require workers to make disruptive transitions to new 
industries, requiring new skills and occupations.
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1. Introduction

There is widespread concern today that many jobs will be lost to new computer 

technologies as more human tasks can be performed by machines. A host of recent papers 

estimate that these technologies put anywhere from 9% of jobs to 47% at risk of automation 

in the near future (see, for example, Arntz et al. 2016, Frey and Osborne 2017). Some people 

argue (Ford 2015) that this expansion in the range of automatable tasks calls for new policies 

to address imminent mass unemployment.

But that inference is not warranted. Automation does not necessarily lead to a loss of 

jobs even in the affected industry. When major industries automate, their employment often 

rises rather than falls (see Figure 1). This might seem surprising because the recent 

experience in many manufacturing industries such as textiles and steel seems to suggest that 

automation leads to job losses in those industries. Some economic theory lends credence to 

that intuition. Baumol (1967) argued that faster productivity growth in manufacturing 

relative to other sectors has led to a declining share of employment in manufacturing; the 

same might pertain to fast productivity growth from information technologies today. 

However, some of these same manufacturing industries actually grew robustly at the same 

time as labour productivity for a century or more before declining. Figure 1 shows this 

“inverted U” pattern for the US cotton textile, primary steel, and automotive industries.

This pattern is important for two reasons. First, it shows that one cannot assume 

that productivity-improving technology necessarily leads to job losses. Second, while 

productive technology might or might not decrease aggregate employment, this pattern 

suggests it will likely have disparate effects on different industries at different times. Some 

industries will grow while others decline and this raises a distinct policy challenge: how to 

https://mc.manuscriptcentral.com/ecpol
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support workers making transitions to new industries, new occupations with new skills, 

sometimes in new regions.

This paper explores why productivity-improving technology brought employment 

growth at some times but not at others, under what conditions such behaviour is likely to 

occur with today’s technologies, and what this means for policy. The contributions of this 

paper are as follows. First, using long data series, I show that demand was initially highly 

elastic in the US cotton textile, primary steel, and automotive industries, but that it became 

inelastic as consumption grew. Second, I provide a novel model of demand satiation that can 

explain why demand became sharply less elastic. This model is able to closely account for the 

growth and subsequent decline in employment in the industries studied. Third, I show some 

general conditions that give rise to declining demand elasticities. The generality of these 

conditions and the historical experience suggest that industries today are likely to respond 

heterogeneously to new computer-based productivity-improving technologies; employment 

will rise in some and fall in others. Some evidence suggests that this is what is happening.

Finally, I draw implications for policy. Whether productivity-improving technology is 

increasing employment in some industries today can, and must, be determined empirically, 

of course.  But this is a key policy implication: policymakers cannot assume that 

productivity-improving technology leads to unemployment in all the affected industries. If, 

instead, technology is increasing employment in some industries while decreasing it in 

others, then the policy challenge posed by new computer technologies may be less about 

ameliorating the impacts of mass unemployment and more about helping workers transition 

from some industries, some occupations, and some regions to others. The impacts of this 

sort of change may be no less disruptive, but the nature of policy responses would be 
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critically different. Some evidence suggests that automation, robotics, and information 

technologies are not associated with declining employment in many industries.

The Puzzle of the Inverted U

This paper argues that the key to understanding the changing employment response 

to labour productivity is the nature of demand. Empirical evidence shows that the non-

constant elasticity of demand is a critical factor behind the patterns seen in Figure 1 and the 

paper develops a novel life-cycle model to show why the nature of demand changed in a 

common way across these industries. Common popular intuitions about automation ignore 

the role of demand and much economic theory about automation abstracts away from the 

dynamic role of demand.

A simple model illustrates the links between demand, labour productivity, and 

employment. Let demand for an industry’s product be a function of price, p, and the wage, 

w, such that per capita demand . At the market-clearing equilibrium, domestic 𝐷 = 𝐷(
𝑝
𝑤, 𝑤)

output, Y, equals consumption minus imports, so that , where I is 𝑌 = (1 ― 𝐼) ∙ 𝑁 ∙ 𝐷(
𝑝
𝑤, 𝑤)

the net import share and N is population (I assume for now that all consumers have the 

same demand function). Define labour productivity as industry output divided by industry 

employment, , so that . For expositional simplicity, temporarily assume that the 𝐴 ≡
𝑌
𝐿 𝐿 =

𝑌
𝐴

import share is independent of A. Then the response of log industry employment to log 

productivity is

(1)

∂ln 𝐿
∂ln 𝐴 =

∂ln 𝐷
∂ln 𝐴 ― 1.

https://mc.manuscriptcentral.com/ecpol
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Figure 1. Production Employment in Three Industries

Note: The solid line represents predicted employment based on the model developed below.
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If demand increases sufficiently in response to productivity-improving technology, then

employment will grow; otherwise, it will fall. The elasticity of demand with respect to labour 

productivity determines whether productivity-improving technology increases or decreases 

employment. A prime reason for demand to grow in response to new technology is that 

productivity growth will reduce prices in competitive markets. Below, I show how this 

elasticity is related to the price elasticity.

But what was the actual relationship between demand and labour productivity? Did 

the elasticity of demand change over time in a way that could explain the rise and fall in 

employment? Figure 2 shows labour productivity growth over time; Figure 3 shows per 

capita demand (final consumption) plotted against labour productivity, both on logarithmic 

scales. Note that for textiles and steel some recent observations, shown as empty circles, fail 

to control for import competition in downstream markets and, thus, no longer capture 

demand properly.1 The data behind these figures are described below. 

While each industry began growing rapidly at different times, each shows a strong, 

sustained, and relatively rapid growth of physical output per worker hour. Employment was 

indeed growing as new technology generated greater output per unit of labour. Figure 3 

shows that consumption increased along with labour productivity, and all three industries 

exhibit a common concave pattern: demand increased rapidly along with productivity during 

the early years, but this relationship flattened out in later years. Demand satiated. Since the 

1 The consumption measure includes net imports; however, I am not able to correct for trade impacts in 
downstream industries to textiles and steel. I have calculated demand by adding net imports to the amount of 
product produced domestically. However, for textiles and steel, further adjustment is needed because these are 
intermediate-goods industries. The ultimate consumption good is produced by another industry and that good 
can be imported as well. For example, the consumption of textiles in the form of apparel includes: 1) apparel 
produced in the US with US cloth, 2) textiles that were imported to the US and used by domestic apparel 
producers, and 3) apparel produced outside the US using cloth also produced outside the US. Even after 
adjusting for imports of textiles, my measure of consumption misses the cloth imported in apparel made 
abroad.

https://mc.manuscriptcentral.com/ecpol
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axes are plotted on log scales, the slope of the curve roughly represents the elasticity of 

demand with respect to productivity. This is not quite accurate because demand also 

depends on income levels, which also grew over this period. Below I estimate models that 

include both, but this figure conveys the essential intuition: demand was initially very elastic, 

allowing employment to grow with productivity; later, demand became inelastic and 

employment declined.

Demand satiation thus provides an intuitive explanation for the inverted U in 

employment. Below, I develop a model that can explain why this pattern of declining 

demand elasticity occurs and draws out policy implications.

Literature

The significance of this analysis relative to the literature is that it identifies the central role of 

demand in mediating the impact of productivity-improving technology on jobs. Both 

historical evidence and my theoretical model imply that, for significant industries, demand 

and productivity growth interact in a systematic way: at low, initial levels of productivity, 

demand elasticities are high; as productivity growth gradually satiates the market, demand 

elasticities fall sharply. Because industries today may have very different demand elasticities 

from one another, the impact of major new technologies on employment is likely to be 

highly heterogeneous. The impact will not be uniformly job-destroying, rather some 

industries will shrink, others will grow. Hence workers will need to transition to new 

industries, often requiring new skills, new organizations, and new locations. Facilitating these 

transitions and reducing their social cost thus becomes an important policy challenge.
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Figure 2. Labour Productivity over Time
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Figure 3. Per Capita Consumption
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Note: The solid lines represent prediction from the model developed below.

In contrast to this analysis, recent work on automation abstracts away from demand 

heterogeneity. A recent theoretical literature, cognizant of new technologies, has focused on 

the impact of automation, defined as technical change that allows machines to replace 

humans performing specific production tasks (Acemoglu and Restrepo 2017, 2018a, 2018b, 

Hemous and Olsen 2016, Aghion et al. 2017). But these papers assume that the price 

elasticity of demand—or, equivalently, the elasticity of substitution between industries or 

between tasks—is constant and uniform across industries or tasks.2 

2 These papers use Dixit-Stiglitz aggregators to construct aggregate output from the output of individual 
industries or tasks. In this setting, the elasticity of substitution corresponds to a price elasticity of demand.
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In some of these models, automation can increase the demand for labour, but that 

outcome depends on the relative productivity of the new technology. For example, 

Acemoglu and Restrepo (2017, 2018a) argue that “in contrast to some popular discussions, 

the new AI and robotics technologies that are more likely to reduce the demand for labour 

are not those that are brilliant and highly productive, but those that are ‘so-so.’” But the 

historical evidence shows that labour demand rises or falls with new technology even when 

productivity growth is roughly the same. The task-based models of automation miss the 

critically important role that demand elasticity can play in determining whether automation 

increases or decreases labour demand. “Brilliant” technologies will lead to declining 

employment if demand is inelastic and “so-so” technologies can lead to job growth if 

demand is highly elastic.

Moreover, by assuming constant and uniform demand elasticities, these models miss 

the dynamic interactions that create substantial heterogeneity between industries at different 

points in their life-cycles. This is also true of much of the larger literature on structural 

change and deindustrialization. For example, Baumol (1967) explains the decline of 

manufacturing’s share of employment as the result of higher productivity growth in 

manufacturing compared to services.3 But his model critically assumes inelastic demand for 

manufactured goods. Similarly, another literature following “Engel’s Law” attributes the 

decline in manufacturing employment to a low (and constant) income elasticity for 

manufactured goods; these goods are seen as “necessities” with income elasticities less than 

one.4 Yet these same goods apparently were luxuries with higher income elasticities in the 

3 See also Lawrence and Edwards 2013, Ngai and Pissarides 2007, Matsuyama 2009.
4 Clark (1940), building on earlier statistical findings by Engel (1857) and others, argued that necessities such as 
food, clothing, and housing have income elasticities that are less than one. See also Boppart 2014, Comin, 
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past. This paper demonstrates substantial declines in the elasticity of demand, and it 

introduces a novel theory that explains the decline as a function of falling prices relative to 

wages. Because productivity growth reduces prices relative to wages, this model provides a 

theory of industry life cycles that applies under common conditions. While previous models 

provide a rationale for falling income elasticities, none has explored the link between 

productivity growth and dynamic demand elasticity.5 

This paper also looks somewhat more broadly at technology than the recent papers 

on automation. The particular concern about automation is that, of all types of technological 

change, human-replacing automation most directly threatens to reduce employment. But any 

productivity-improving technology can reduce employment as in equation (1). This paper 

considers all technologies that increase output per worker, regardless of whether this 

increase is specifically achieved by task replacement or not. This category includes Hicks-

neutral technical change, biased or labour-augmenting technical change, as well as 

automation. To be sure, much of the productivity-improving technology affecting the three 

industries studied here is automation per se. Bessen (2012) identifies the sources of output 

growth per worker in textile weaving and finds that most of the increase comes from task 

automation. In the framework used here, technology affects employment by increasing 

output per worker independently of how the capital-labour ratio changes. 

Another concern about automation is that it might decrease labour’s share of output, 

all else equal. In this paper, labour’s share is taken as an empirical quantity rather than 

Lashkari, and Mestieri 2015, Kongsamut, Rebelo, and Xie 2001 and Matsuyama 1992 for more general 
treatments of nonhomothetic preferences.
5 Matsuyama (2002) introduced a model where the income elasticity of demand for goods falls as incomes 
grow. See also Foellmi and Zweimueller (2008). Also, Banks et al. (1997) find that some commodities show a 
fall in income elasticity when examined in cross-sectional data.

https://mc.manuscriptcentral.com/ecpol
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assumed to either be fixed or to change in any prescribed way. In fact, the industry data on 

labour’s share do not exhibit a secular trend prior to 1950 despite high levels of automation. 

And evidence suggests that technology does not play a major role in the recent decline in 

labour’s share.6 In any case, the change in labour’s share, while important, is separate from 

the question of the impact of technology on employment.

Another difference with the literature concerns the level of aggregation. The recent 

literature on automation mainly considers single-sector economies or economies where 

broad sectors are distinguished by the extent to which tasks are prone to automation. But 

industry-level analysis is more appropriate for this study because a high level of aggregation 

misses inter-industry transitions. In Figure 1, one can see that textile industry employment 

declined for many decades while steel and auto employment grew. The timing of growth in 

these industries varied because of historical industry-specific differences in technology.7 On 

net, workers made transitions between industries, but those transitions did not necessarily 

appear in the employment pattern for the manufacturing sector as a whole. To the extent 

that productivity-improving technologies have different employment impacts across 

industries at different times, broad sectoral analysis misses an important dimension of the 

disruption they may cause.

The paper is organized as follows. The next section briefly describes the data. 

Section 3 uses non-parametric methods to test whether the productivity elasticity of demand 

6 Autor et al. (2017) find that most of the recent decline arises from changes between firms not changes within 
firms; firms with lower labour share have been growing faster. 
7 Cotton textile consumption soared following the introduction of the power loom to US textile manufacture in 
1814; steel consumption grew following the US adoption of the Bessemer steelmaking process in 1856, and 
Henry Ford’s assembly line in 1913 initiated rapid growth in motor vehicles. While each of these industries 
benefited from general purpose technologies such as steam and electric engines and machine tools, the periods 
of rapid growth began with industry-specific innovations.
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declined over time from a level above one. Section 4 presents a simple model of demand 

satiation to explain why these elasticities declined and shows that this model applies under 

some rather general conditions. Section 5 shows that the model predicts the actual rise and 

fall of employment in the subject industries with reasonable accuracy. Section 6 discusses 

policy implications and Section 7 concludes.

2. Data

Time series over a century in length often require combining data from different 

sources involving various adjustments. I describe the data sources and adjustments in detail 

in the Appendix. This section describes the main data series used in estimating employment 

in cotton textiles, steel, and automotive industries. Prior to 1958, most of the data series are 

not available annually but typically occur at decadal intervals.

Production and demand

I use physical quantities to measure production and demand. For the textile industry, 

I measure output as yards of cotton cloth produced plus yards of cloth made of synthetic 

fibres from 1930 on. From 1958, I use the deflated output of the cotton and synthetic fibre 

broadwoven cloth industries (SIC 2211 and 2221). For the early years, I also included 

estimates of cotton cloth produced in households. For steel, I used the raw short tons of 

steel produced. For the motor vehicle industry, I used the number of passenger vehicles and 

trucks produced each year.

To estimate per capita demand or consumption, I add net imports to the estimates 

of domestic production and divide by the population. In all three industries, net imports 

were small relative to shipments except during very early and very late years.
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Note that these measures do not adjust for product quality.8 This approach avoids 

distortions that might arise from constructing quality adjusted price indices over long periods 

of time. It does mean that “true” demand and productivity are understated. However, this 

does not pose a significant problem for my analysis because I measure both without quality 

adjustments. The distribution function I estimate would, of course, be different if it were 

estimated with quality-adjusted data, but using unadjusted data allows for consistent 

predictions of employment.

Employment, prices, and wages

I count the number of industry wage earners or, from 1958 on, the number of 

production workers. For prices, I use the prices of standard commodities. For cotton 

textiles, I use the wholesale price for cotton sheeting. For steel, I use wholesale prices for 

steel rails. I do not have a similar commodity price for motor vehicles. The US Bureau of 

Labour Statistics (BLS) does have a price index for the automotive industry, but this measure 

implicitly changes as the quality of vehicles improved. I need to use a commodity-type price 

because my measures of output and consumption (cars and trucks) do not capture these 

quality improvements. For wages, I use the compensation of manufacturing production 

workers. This measure includes the value of employee benefits from 1906 on.

Because price data are limited, I also obtain data on labour’s share of output, the 

wage bill divided by the value of product shipped. Prices relative to wages can then be 

estimated from the labour share and labour productivity series, .9 𝑠 ∙ 𝐴 =
𝑤
𝑝

8 The deflators used from 1958 on in cotton are quality adjusted but the series closely matches the unadjusted 
output measure during the years when they overlap.

9  where A is labour productivity, Y is output, L is labour, s is labour share of output, w is the wage, 𝑠 ≡
𝑤𝐿
𝑝𝑌 =

𝑤
𝑝𝐴

and p is the product price. It then follows that .𝑠 ∙ 𝐴 =
𝑤
𝑝
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Labour productivity

I calculate labour productivity by dividing output by the number of production 

employees times the number of hours worked per year. I use industry specific estimates of 

hours if available and estimates of hours for manufacturing workers if not. 

Over the sample periods, each industry exhibited rapid labour productivity growth. 

From 1820 to 1995, labour productivity in cotton textiles grew 2.9% per year; in steel, it 

grew 2.4% per year from 1860 to 1982; in motor vehicles, it grew 1.4% per year from 1910 

through 2007. Figure 2 shows labour productivity for each industry on a log scale over time. 

Each industry exhibits steady productivity growth over long periods of time. Textiles and 

especially automotive show initially higher rates of growth; steel exhibits faster growth since 

the 1970s, likely the effect of steel minimills that use recycled steel rather than blast furnace 

production of iron.

3. Non-parametric estimates of demand

Price elasticity and productivity elasticity

This section seeks to perform statistical tests on demand, , using a non-𝐷(
𝑝
𝑤, 𝑤)

parametric expansion in  and . The statistical tests relate to the productivity elasticity, 
𝑝
𝑤 𝑤

∂ln 𝐷
∂ln 𝐴

, specifically testing the null hypotheses that 1) this elasticity is not constant or increasing, 2) 

that it was not greater than 1 during the early years of each industry, and 3) that it was not 

less than 1 during the later years. Rejections of these hypotheses confirm the key notions 

that demand elasticity is concave and that it declined from initial high levels to inelastic levels 

later.
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In order to perform the tests, it is necessary to relate  to  and . A useful 
∂ln 𝐷
∂ln 𝐴

𝑝
𝑤 𝑤

relationship derives from the definition of the labour share of output:

(2)

𝑠 ≡
𝑤𝐿
𝑝𝑌 =

𝑤
𝑝𝐴  so that 

𝑤
𝑝 = 𝐴𝑠.

Assuming that ,10 the elasticity of demand with respect to labour productivity can be 
∂ 𝑤
∂ 𝐷 = 0

written

(3)

∂ln 𝐷
∂ln 𝐴 =

∂ln 𝐷
∂ln 𝐴𝑠

∂ln 𝐴𝑠
∂ln 𝐴 = ―

∂ln 𝐷

∂ln 𝑝
𝑤

∂ln 𝐴𝑠
∂ln 𝐴 = 𝜖 ∙ (1 +

∂ln 𝑠
∂ln 𝐴)

where  is the price elasticity of demand while the partial derivative represents the influence 𝜖

of productivity on labour’s share of output. In Acemoglu and Restrepo’s model (2017, 

2018a,b), automation reduces labour’s share of output while increasing productivity. If so, 

then  would be negative. I provide estimates of this term below, and it is not always 
∂ln 𝑠
∂ln 𝐴

negative nor is it large. In any case, (3) means that a large decline in the price elasticity of 

demand corresponds more or less to a large decline the elasticity of demand with respect to 

productivity. The productivity elasticity is also closely related to the income elasticity of 

demand.11

10 This is because industry employment is a small part of total employment so that industry demand has a 
negligible effect on overall labour demand. See the model below.

11 The income elasticity of demand is  Hence a large decline in the price elasticity of demand might  𝜖 +
∂ln 𝐷
∂ln 𝑤.

well be associated with a large decline in the income elasticity.
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Testing demand

To estimate demand elasticities, I assume that the log of per capita demand can be 

captured as the sum of two quadratic forms, one in the price relative to the wage and the 

other in the wage:

(4)

This equation can ln 𝐷(𝑝
𝑤, 𝑤) = 𝛼 + 𝛽1ln

𝑤
𝑝 + 𝛽2(ln

𝑤
𝑝)

2

+ 𝛾1ln 𝑤 + 𝛾2(ln 𝑤)2 + 𝜀

be estimated separately for each industry over the observed years, using  in lieu of  and 𝐴 ∙ 𝑠
𝑤
𝑝

measuring w as real GDP per capita.12 The top panel of Table 1 reports the regression 

coefficients. This non-parametric specification fits the data quite well with R-squareds of 

.979, .974, and .934 for textiles, steel, and autos respectively. 

To check the robustness of these regressions, I repeated them using a measure of the 

production wage deflated by the Consumer Price Index (CPI). The results were broadly 

similar. Another concern was possible serial correlation. Annual data are not available until 

1958, so serial correlation is not a realistic concern over most of the data. Nevertheless, I re-

ran the estimates with AR(1) and AR(2) disturbances; the results were broadly similar. 

Another concern is possible co-integration of the dependent and independent variables 

giving rise to spurious correlation. Augmented Dickey-Fuller tests could not reject the null 

12 At first glance, this substitution might seem to include a version of the dependent variable on the right-hand 
side. In terms of the source data, I calculate  as (physical output / labour) * (wage bill/value of shipments) 𝐴 ∙ 𝑠
= w/p. While physical output is related to the dependent variable (it is per capita demand with an adjustment 
for population and net imports), it is also implicitly included in the value of shipments that goes into calculating 
the labour share. Thus, it is effectively cancelled out on the right-hand side. It is possible that this procedure 
introduces measurement error. To check this, I ran a version instrumenting the terms involving  using  𝐴 ∙ 𝑠 ln

𝑝
𝑤

and . Results were similar.(ln
𝑝
𝑤)2
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hypothesis of no co-integration (probability values of .989, .922, and .322 respectively). 

Demand might also be influenced by long term changes in tastes that could be correlated 

with prices and wages. Including trend terms in the regressions, I obtained very similar 

results, suggesting that the basic relationships in (4) are largely independent of secular trends.

Note that the estimate of  (the coefficient of ) is negative and highly 𝛽2 ( ln 𝑠𝐴)2

significant in all three industries. This is sufficient to reject the null hypothesis that the 

demand curve is non-concave with respect to productivity.13

Note also that the terms in  are generally more significant statistically than the 𝐴 ∙ 𝑠

terms in w. They are also much more significant economically because the growth in labour 

productivity was much greater than the growth in wages. For example, from 1810 to 2011, 

real GDP per capita rose 30-fold, but output per hour in cotton textiles rose over 800-fold.14 

Similarly, from 1860 to 2011, real GDP per capita rose 17-fold, but output per hour in steel 

production rose over 100 times. This comparison suggests that the pure income effects are 

relatively small compared to the productivity effects. This is important because productivity 

growth can vary substantially between industries, creating different demand patterns.

Assuming that demand can be written as a function of prices and wages in (4), the 

estimates can be used to calculate demand elasticities. To calculate the right-hand side of (3), 

we need estimates of  and . The former can be calculated from the regression 𝜖
∂ln 𝑠
∂ln 𝐴

coefficients:

13 . As long as the partial derivative is not unreasonably large, the sign 
∂2ln 𝐷
∂ln 𝐴2 = 2𝛽2(1 +

∂ln 𝑠
∂ln 𝐴)

of this term depends on 𝛽2.

14 Textile productivity rose from .25 yards/hour to 212; steel labor productivity rose from .006 tons/hour to 
.70.
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𝜖 =
∂ln 𝐷

∂ln 𝑤
𝑝

= 𝛽1 + 2𝛽2ln 𝐴𝑠.

I estimate the latter by regressing 

ln 𝑠 = 𝛿ln 𝐴 + 𝑐 + 𝜀.

These estimates are found in panel B of Table 1. The estimates of  for textiles and autos are 𝛿

small and positive; the estimate for autos is modest and negative. Interpreting the change in 

labour’s share over time as a linear function of labour productivity requires the heroic 

assumption that nothing else affects labour’s share. That is almost certainly not true. For 

instance, the decline in the auto industry, which occurred entirely after 1980, might well be 

related to the dramatic decline in union membership since then. In any case, the elasticities 

estimated using (3) are not too sensitive to these estimates of . Using the alternative 𝛿

assumption that labour’s share is fixed does not change the pattern of results.

Panel C in Table 1 shows estimates of the elasticities at different years and the 

probability values of a series of F tests on these various quantities. The first row shows 

estimates of the elasticities for early years in each industry, 1820, 1870, and 1910 respectively 

for textiles, steel, and auto. All of the estimates are significantly greater than one. The next 

two rows repeat the exercise for 1950 (1951 for autos). All of the elasticities declined from 

their earlier values and all are less than one, both economically and statistically. 

Estimates of elasticities based on (4) might suffer because the quadratic specification 

might not fit the true relationship well in all ranges. Note, in particular, that the estimate of 

the price elasticity of steel is negative in 1950. The bottom panel of Table 1 provides 

estimates of price elasticities using a specification based on the model developed below for 

comparison. This specification, from Table 2, Column 1, fits the data better than does 
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equation (4), and it produces more reasonable, although generally similar, estimates of the 

productivity elasticities of demand. 

In summary, non-parametric estimates of demand functions reject the view that the 

elasticities of demand with respect to price and income for three major manufactured goods 

have been less than one and constant. These industries began with elastic demand that 

became inelastic over time. By (1) this implies that productivity growth increased 

employment at first and then decreased it.

4. A Model of Demand and Technical Change

Simple model of the Inverted U

These findings reject some common assumptions about how technology leads to 

employment loss and about the nature of demand elasticity. But it also raises a question: why 

was it that demand in three major industries followed a similar pattern? This section 

develops a model to explain why demand elasticities began high and then declined, how that 

change generated the inverted U in employment, and how general this phenomenon might 

be with an eye to understanding its relevance to current conditions. 

Consider production and consumption of two goods, cloth, quantity y, and a general 

composite good, quantity x, in autarky. The model will focus on the impact of technology on 

employment in the textile industry under the assumption that the output and employment in 

the textile industry are only a small part of the total economy. The model aims to sketch out 

how industry-specific productivity growth and general income growth can affect demand, 

including conditions where these trends give rise to an inverted U in employment.
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Consumption

Consider a consumer’s demand for cloth. Suppose that the consumer places different 

values on different uses of cloth. The consumer’s first set of clothing might be very valuable 

and the consumer might be willing to purchase even if the price were quite high. But cloth 

draperies might be a luxury that the consumer would not be willing to purchase unless the 

price were modest. Following Dupuit (1844) and the derivation of consumer surplus used in 

industrial organization theory, these different values can be represented by a distribution 

function. Suppose that the consumer has a number of uses for cloth that each give her value 

v, no more, no less. The total yards of cloth that these uses require can be represented as f(v). 

That is, when the uses are ordered by increasing value, f(v) is a scaled density function giving 

the yards of cloth for value v. Now suppose our consumer will purchase cloth for all uses 

where the value received exceeds a threshold, . This threshold will be determined by 𝑣 > 𝑣

utility maximization subject to a budget constraint. Demand is then a function of this 

threshold:

𝐷(𝑣) = ∫
∞

𝑣
𝑓(𝑧) 𝑑𝑧 = 1 ― 𝐹(𝑣),        𝐹(𝑣) ≡ ∫

𝑣

0
𝑓(𝑧)𝑑𝑧

where I have normalized demand so that maximum demand is 1. With this normalization, f 

is the density function and F is the cumulative distribution function. I assume that these 

functions are continuous with continuous derivatives for  and that  in this 𝑣 > 0 𝑓(𝑣) > 0

domain.15

The total value she receives from these purchases is then the sum of the values of all 

uses purchased,

15 The last condition is necessary to ensure that the indifference curve between cloth and the general good, x, is 
convex.
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This quantity measures the gross consumer surplus and can 𝑈(𝑣) = ∫
∞

𝑣
𝑧 ∙ 𝑓(𝑧)𝑑𝑧.

be related to the standard measure of net consumer surplus used in industrial organization 

theory (Tirole 1988, p. 8). In that setting, , the price. After integrating by parts and 𝑣 = 𝑝

assuming  we obtain𝐷(∞) = 0,

𝑈(𝑝) = ∫
∞

𝑝
𝑧 ∙ 𝑓(𝑧)𝑑𝑧 = ― ∫

∞

𝑝
𝑧 ∙ 𝐷′(𝑧)𝑑𝑧 = 𝑝 ∙ 𝐷(𝑝) + ∫

∞

𝑝
𝐷(𝑧)𝑑𝑧.

In words, gross consumer surplus equals the consumer’s expenditure plus net consumer 

surplus. I interpret U as the utility that the consumer derives from cloth.16

The consumer also derives utility from consumption of the general good, x. Assume 

that the utility from this good is additively separable from the utility of cloth so that total 

utility is

𝑈(𝑣) + 𝐺(𝑥)

where G is an increasing concave differentiable function. The consumer will select v and x to 

maximize total utility subject to the budget constraint

(5)

𝑤 ≥ 𝑥 + 𝑝𝐷(𝑣)

where the price of the general good is taken as numeraire and w is the consumer’s wage (all 

consumers are workers). The consumer’s Lagrangean can be written

ℒ(𝑣,𝑥) = 𝑈(𝑣) + 𝐺(𝑥) +  𝜆(𝑤 ― 𝑥 ― 𝑝 ∙ 𝐷(𝑣)).

16 Note that in order to use this model of preferences to analyze demand over time, one of two assumptions 
must hold. Either there are no significant close substitutes for cloth or the prices of these close substitutes 
change relatively little. Otherwise, consumers would have to take the changing price of the potential substitute 
into account before deciding which to purchase. If there is a close substitute with a relatively static price, the 
value v can be reinterpreted as the value relative to the alternative. Below I look specifically at the role of close 
substitutes for cotton cloth, steel, and motor vehicles.
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Taking the first order conditions, 

𝐺𝑥 = 𝜆,     𝑣(𝑝,𝑤) = 𝑝 𝜆 = 𝑝 ∙ 𝐺𝑥(𝑥(𝑝,𝑤))

where the subscript designates a derivative and the “hats” indicate optimal solutions.

Production

Let there be three sectors, one producing cloth, one producing good x, and one 

producing an investment good, quantity I. Each sector is composed of many firms in 

competitive markets. The aggregate output of cloth, , where L is textile 𝑌 = 𝑌(𝐿, 𝐾; 𝑡)

labour, K is capital, t captures the state of technology, and  is a constant returns 𝑌( ∙ )

production function that is continuous and differentiable. Capital and the general good, x, 

are produced using simpler production functions

where X is the aggregate output of x, N 𝑋 = 𝑎 ∙ 𝐿𝑥,     𝐼 = 𝑎 ∙ 𝐿𝐼,     𝑁 = 𝐿 + 𝐿𝑥 + 𝐿𝐼

is population (or workforce),  and  are the workforce size in the x and I production 𝐿𝑥 𝐿𝐼

sectors, and a is a measure of general productivity that increases over time. Taking the price 

of good x and the investment good as numeraire, aggregate profits of each sector are

(6)

𝜋𝑦 = 𝑝 ∙ 𝑌 ― 𝑤 ∙ 𝐿 ― 𝑟 ∙ 𝐾,     𝜋𝑥 = 𝑋 ― 𝑤 ∙ 𝐿𝑥,     𝜋𝐼 = 𝐼 ― 𝑤 ∙ 𝐿𝐼.

Firms in each sector employ a fraction of the total labour and capital and earn the 

same fraction of profits. The first order profit maximizing conditions imply

(7)

𝑤 = 𝑎 = 𝑝 ∙
∂ 𝑌
∂ 𝐿.

Assuming that competitive markets generate zero profits in each sector and equating 

aggregate income ( ) with aggregate output ( ), it is straightforward to 𝑤𝑁 + 𝑟𝐾 𝑝𝑌 + 𝑋 + 𝐼
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show that per capita consumption expenditures equal w, as in the individual budget 

constraint (5).

Finally, since I am concerned here just with the determinants of the demand for 

cloth, I do not specify the savings function and the dynamic growth path of capital. 

Equations (6) and (7) will hold at each point in time. Also, I assume that textile consumption 

(or steel or autos) is very small compared to total consumption, . The consumption 𝑝𝑌 ≪ 𝑋

of cotton textiles, steel, and motor vehicles never exceeded a few percent of national income 

during the entire period studied. Note that this implies that  and  so that each 
∂𝑥
∂𝑝 ≈ 0 𝑋 ≈ 𝑤𝑁

individual’s consumption of x is   Taking (2), rearranging, substituting from (6) and 𝑥 ≈ 𝑤 .

equating total demand and output of cloth ( ),𝑌 = 𝑁 ∙ 𝐷

(8)

𝑝 =
𝑎

𝑠𝐴,      𝐿 =
𝑁 ∙ 𝐷(𝑣(𝑝,𝑤))

𝐴 .

Price elasticity of demand and the Inverted U

Equation (1) shows that  determines the relationship between employment 
∂ln 𝐷
∂ln 𝐴

growth and productivity growth. Specifically, if this elasticity is greater than 1 at high prices 

(relative to wages) and lower than 1 at low prices, then employment will trace an inverted U 

as prices decline with productivity growth. Equation (3) says that this elasticity is determined 

by the price elasticity of demand, , and the elasticity of labour’s share of output with respect 𝜖

to productivity.

I will now show that this pattern can occur under some fairly general conditions. 

Begin with the price elasticity of demand. Assuming, as above, that , the price 
∂𝑥
∂𝑝 = 0

elasticity of demand is
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(9)

𝜖(𝑝,𝑤) = ―
∂ln 𝐷
∂ln 𝑝 = ―

∂ln 𝐷(𝑣)
∂𝑣

𝑝 ∂𝑣
∂𝑝 =

𝑝𝑓(𝑣(𝑝,𝑤))
1 ― 𝐹(𝑣(𝑝,𝑤))𝐺𝑥(𝑥(𝑝,𝑤)).

Holding the wage constant, the price elasticity will change with the price depending 

on the nature of the preference function, . The following proposition holds that for 𝐹( ∙ )

common distribution functions, the price elasticity of demand will be greater than 1 at 

sufficiently high prices and less than 1 at sufficiently low prices (see Appendix for proofs):

Proposition. Holding the wage constant and assuming ,
∂𝑥
∂𝑝 = 0

1. Single-peaked density functions. If the distribution density function, f, has 
a single peak at , then .𝑝 = 𝑝

∂𝜖
∂𝑝 ≥ 0  ∀ 𝑝 < 𝑝

2. Common distributions. If the preference distribution is normal, lognormal, 
exponential, or uniform, there exists a such that for , and for 𝑝 ∗ 0 < 𝑝 < 𝑝 ∗ ,  𝜖 < 1

 𝑝 ∗ < 𝑝,  𝜖 > 1.

The labour share is the remaining consideration. Clearly, if the labour share of output 

is constant, then the proposition implies that  will be greater than one for a sufficiently 
∂ln 𝐷
∂ln 𝐴

large initial price and will be less than one for a sufficiently small price; the inverted U 

property will hold. The property will also hold if labour’s share of output does not change 

drastically, as has been true historically. The inverted U property will only fail to hold in the 

unusual case where  Thus this proposition suggests that the model of demand 
∂2ln 𝑠
∂ln 𝐴2 ≫ 0.

derived from distributions of preferences can account for the inverted U curve in 

employment under fairly general circumstances as long as price starts above  and declines 𝑝 ∗

below it.
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5. Parametric estimates of the Model

Applying the model

The model above provides a parsimonious explanation for the inverted U shape of 

industry employment observed over time. But how well does this highly simplified model 

actually predict the patterns observed? A close fit would provide some support for its 

relevance. However, the model abstracts away from several considerations that might 

undermine efforts to fit the model, considerations that I discuss in this section. In general, I 

find that the model fits the data for employment and consumption rather well despite these 

concerns, except during the most recent decades of the textile and steel industries.

One concern is that the model assumes no substantial interference from close 

substitute products. For a substitute to pose a problem for this empirical exercise, it would 

have to replace a substantial share of the uses of the target product over a substantial period 

of time. Otherwise, the substitute could not produce more than a temporary deviation from 

the level of consumption of the target product predicted by the model. In fact, each industry 

studied here did have substitutes, especially during the early years, but these substitutes were 

fairly static technologically and were quickly overtaken. Cotton cloth competed with wool 

and linen. However, wool and linen were mainly produced within the household (Zevin 

1971) and did not directly compete in most markets. In urban markets where they did 

compete, wool tended to be substantially more expensive per pound and its price declined 

only slowly compared to cotton.17 During the early years of the Bessemer steel process, steel 

rails were much more expensive than iron rails, but steel rails lasted much longer, making the 

17 For example, in Philadelphia in 1820, wool was $0.75 per pound while cotton sheeting was $0.15 (US Bureau 
of the Census 1975).
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higher price worth it for many uses. By 1883, the price of steel rails fell below the price of 

iron rails, eliminating the production of this substitute (Temin 1964 p. 222). And cars and 

trucks competed with horse drawn vehicles during the early years. However, here, too, 

production of horse drawn vehicles collapsed very quickly.18 In all three industries, the 

substitution that took place might not have caused a major deviation from the model.

It is also possible that new technologies introduce new substitutes or find new uses 

for commodities, changing the shape of the preference distribution function. Since the 

1970s, steel may have faced greater competition from aluminium and other materials for use 

in cars and cans (Tarr 1988 p. 177-8), perhaps contributing to the poorer fit of the model 

then (see below). 

Another concern is that the distribution of preferences changes over time, for 

instance, as income inequality changes. For instance, greater economic inequality might 

correspond to an increase in the variance of the distribution ( ), leading to a slower pace of 𝜎

job growth. Also, product quality changes over time, distorting consumption measures that 

are not adjusted for quality. In addition, the model does not take into account time patterns 

of consumption for consumer durables (auto) and investment goods (some steel). In any 

case, despite all these potential problems, the model fits the data reasonably well.

Parameterizing the model

In order to investigate the model empirically, it is helpful to provide a flexible 

functional form for :𝐺𝑥

18 The production of carriages, buggies, and sulkies fell from 538,000 in 1914 to 34,000 in 1921; the production 
of farm wagons, horse-drawn trucks, and business vehicles fell from 534,000 in 1914 to 67,000 in 1921 (US 
Bureau of the Census 1975). Bicycles and motorbikes do not appear to have substantially replaced large 
numbers of motor vehicles.
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(10)

𝐺𝑥(𝑥(𝑝,𝑤)) = 𝑥𝛼 ― 1,    0 ≤ 𝛼 < 1. Making 𝐺(𝑥) =
1
𝛼𝑥

𝛼
 if 𝛼 > 0 or 𝐺(𝑥) = ln 𝑥 if 𝛼 = 0.

Recalling that the assumption that , (7) and (8) yield𝑥 ≈ 𝑤

(11)

𝑣(𝑝,𝑤) ≈
𝑝
𝑤 ∙ 𝑤𝛼 =

𝑤𝛼

𝑠 ∙ 𝐴.

The first expression presents  as the product of the ratio of price to the wage—as is 𝑣

commonly specified in indirect utility functions—and a pure income term. The second 

expression presents  as the product of labour productivity in textiles and an income term 𝑣

(the labour share of output is approximately constant during most of the sample period). 

Then, choosing a lognormal specification for per capita demand, D, can be 𝐹( ∙ ), 

written

(12)

𝐷 = 𝛾(1 ― Φ( ―ln 𝑠𝐴 + 𝛼ln 𝑤 ― 𝜇
𝜎 )) + 𝜀

or

(13)

𝐷 = 𝛾(1 ― Φ(ln 𝑝 𝑤 + 𝛼ln 𝑤 ― 𝜇
𝜎 )) + 𝜀

where  is the standard normal cumulative distribution function and  is an error term that Φ 𝜀

captures, among other things, demand shocks and changing tastes.  and  are parameters 𝛾, 𝜇 𝜎

to be estimated. Finally, the per capita demand function is defined above as the demand of a 
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single individual. It is straightforward to re-conceptualize D as an average over all individual 

consumers. 

Model estimates

This section estimates the log version of (12) and (13). The dependent variable is the 

log of consumption per capita as seen in Figure 3. The solid line in that figure is estimated 

using a lognormal distribution as in equation (12), although the specification is slightly 

different.19  

In order to measure consumption, it is necessary to make adjustments to production 

figures in order to account for trade. All figures are adjusted for net imports; however, I lack 

complete data on imports in downstream industries. For this reason, I can only estimate 

demand for those years where downstream imports are not too large. For textiles, I estimate 

demand through 1995; for steel, I estimate demand through 1982.20 As a robustness check, I 

used different cutoff years, but small changes in the cutoff year did not change coefficient 

estimates significantly. 

Table 2 shows NLLS estimates of equations (12) in columns 1 and 2 and estimates 

of equation (13) for textile and steel in column 3. Columns 1 and 3 set , excluding 𝛼 = 0

secondary income effects. All of the regressions have a good fit, although the regressions 

using labour productivity (columns 1 and 2) fit better than those using the ratio of prices to 

19 The line in the figure assumes  and it holds s constant.𝛼 = 0
20 In 1996, imports comprised a third of apparel consumption for the first time and have grown rapidly since. 
After 1982, the largest steel-using industries, fabricated metal products and machinery excluding computers 
(SIC 34 and 35 excluding 357), show a large increase in import penetration. Between 1982 and 1987, the import 
penetration (net imports over domestic production) grew 10.5%. As the Figure shows, per capita consumption 
falls dramatically around these cutoff years. Because the consumption data become unrepresentative after these 
years, I estimate the model only for prior years.
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wages (column 3), probably because of the greater volatility of wholesale price data. Note 

that the model fits the data better than estimates using the non-parametric specification in 

Table 1. None of the estimates in column 2 find a significant coefficient for  and the NLLS 𝛼

regression for the auto industry failed to converge for this specification.21 The lack of a 

significant estimate of  may be because of lack of statistical power, but it suggests that per 𝛼

capita demand is close to a simple function of , as was seen in the non-parametric 𝐴 ∙ 𝑠

estimates. Assuming that  makes for a simple interpretation of Figure 3. This means 𝛼 ≈ 0

that the pure income effect is negligible, so the figure represents the functional relationship 

between demand and productivity (ignoring changes in labour’s share) and the slope thus 

represents the elasticity. 

These predicted levels of per capita demand can also be used to estimate industry 

production employment by dividing domestic demand (total demand divided by 1 + import 

penetration) by the annual output per production worker. Measuring labour productivity as 

output per production worker-hour, this is22

𝐷𝑒𝑚𝑎𝑛𝑑 𝑝𝑒𝑟 𝑐𝑎𝑝𝑖𝑡𝑎 ∙ 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
1 + 𝐼𝑚𝑝𝑜𝑟𝑡 𝑝𝑒𝑛𝑒𝑡𝑟𝑎𝑡𝑖𝑜𝑛 ∙

1
𝐿𝑎𝑏𝑜𝑢𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 ∙ 𝐻𝑜𝑢𝑟𝑠 𝑤𝑜𝑟𝑘𝑒𝑑/𝑦𝑒𝑎𝑟.

These estimates are shown as the solid lines in Figure 1. The estimates appear to be 

accurate over long periods of time. There are notable drops in employment during the Great 

Depression and excess employment in motor vehicles during World War II. Finally, 

employment drops sharply for the years when my measure of consumption fails in textiles 

(after 1995) and steel (after 1982). It appears that this simple model using a lognormal 

21 This may be due to insufficient curvature in the data to identify the role of 𝛼.
22 For 1820 and before, I also subtract the estimate of labour performed in households.
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distribution of preferences provides a succinct explanation of the inverted U in employment 

in these industries.

6. Policy Implications

A strong implication of the above analysis is that the productivity of new 

productivity-improving technologies is not sufficient to understand their impact on 

employment. Over 18 recent studies predict job losses from new automation technologies.23 

These predictions are based on estimates of the abilities of technology to replace humans, 

that is, the productivity of the technology. As noted above, recent economic theory on 

automation has also largely focused on the productivity-improving effect of new technology, 

abstracting away from non-constant or heterogeneous demand. 

Yet there are important reasons why demand factors also need to be incorporated in 

the analysis. The historical evidence shows that demand elasticities can be high, especially 

when automation is only beginning to take over the work of humans. Moreover, the 

theoretical model provides reason to think that some industries today, especially industries 

that have had little automation to date, may also experience highly elastic demand. If so, 

automation may increase employment in these industries even if the technology is “brilliant” 

and brings large productivity advances. That is, the rate of productivity growth determines 

the pace of employment change, but the elasticity of demand determines the sign.

Moreover, both the historical evidence and the model estimates suggest that 

although demand elasticities change substantially over time, this change may occur slowly. 

23 Erin Winick, “Every study we could find on what automation will do to jobs, in one chart,” MIT Technology 
Review, January 25, 2018, https://www.technologyreview.com/s/610005/every-study-we-could-find-on-what-
automation-will-do-to-jobs-in-one-chart/.
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This is important because it means that for many industries, the demand elasticity in ten or 

twenty years will be similar to the demand elasticity today. Hence, if we want to understand 

the impact of productive new technologies on an industry in ten or twenty years, we need to 

predict productivity growth and also, to estimate the elasticity of demand. 

There is evidence to suggest that new technologies are not uniformly decreasing 

employment but, rather, have disparate effects across industries. Several recent papers find 

that information technology increases employment for some groups and does not appear to 

reduce net employment, except, perhaps, in manufacturing. Gaggl and Wright (2014) find 

that ICT tended to raise employment in wholesale, retail, and finance industries, but had no 

statistically significant effect on other sectors, including manufacturing. Akerman, Gaarder, 

and Mogstad (2015) find that Internet technology increased employment of skilled workers 

and had no effect on unskilled. Mann and Püttmann (2017) find that automation increases 

jobs in services but decreases them in manufacturing. Bessen (2016) finds that computers 

tend to increase occupational employment modestly overall, with job losses in low wage 

occupations. Autor, Dorn, and Hansen (2015) find that local markets susceptible to 

computerization are not more likely to experience employment loss. 

Studies of automation also find little evidence of strong unemployment effects. A 

study of automation in the Netherlands finds that although a substantial share of employees 

work at firms that automate each year, relatively few of those affected leave their employer 

as a result (Bessen et al. 2019). Cirera and Sabetti (2019), studying 53 developing countries, 

find that automation alone does not significantly affect employment, although it may reduce 

employment gains from product innovations. Evidence on the impact of industrial robots is 

more mixed. Using firm level data, Koch, Manulyov, and Smolka (2019) find that firms 

adopting robots increase employment, but other firms in the industry lose. Using more 

https://mc.manuscriptcentral.com/ecpol

D
ow

nloaded from
 https://academ

ic.oup.com
/econom

icpolicy/advance-article-abstract/doi/10.1093/epolic/eiaa001/5709812 by Im
perial C

ollege London Library user on 22 February 2020



34

aggregate data, Graetz and Michaels (2015) and Dauth et al. (2017) find no effect on 

employment and a positive effect on wages; Acemoglu and Restrepo (2017) find a negative 

effect on both with data for commuting zones. Other studies look more generally at the 

effects of productivity growth and innovation on employment.24

Thus, the limited evidence available to date suggests that the impact of these new 

technologies will likely be negative in some industries and neutral or positive in others. 

These findings are entirely consistent with heterogeneous responses across industries 

reflecting different demand elasticities. While new robotic and information technologies 

surely bring significant productivity gains, demand mediates their impact on employment.

This point raises a second major implication of the analysis: the main impact of 

automation in the near future may be to cause a major reallocation of jobs even if it does not 

permanently eliminate large numbers of jobs. That is, employment will fall in some 

industries and grow in others because some industries have satiated demand while others 

have large unmet needs and elastic demand. This kind of change can be highly disruptive 

nevertheless. Workers switching industries often need new skills, and they may need to move 

to new occupations and sometimes new geographical locations and these transitions may 

require periods of unemployment.

For example, during the Industrial Revolution automation was disruptive even 

though it did not create mass unemployment. Numerous observers, including Marx, 

predicted that new technologies would eliminate work, for instance, in textiles. Instead, 

employment grew, but the dislocations brought about were nevertheless substantial, 

contributing to 19th century political upheaval: workers had to acquire new skills, new types 

24 See Autor and Salomons (2018) and Dosi and Mohnen (2018) for an overview of recent papers.
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of vocational training organizations were needed to provide these skills, and there were 

parallel demands to change and broaden the education system, providing universal 

education; workers had to adjust to new types of work organization, moving from farm and 

workshop to highly-disciplined factories; new labour markets had to develop that recognized 

the new skills; many workers had to migrate to urban areas to obtain work.

 The social challenges posed by new technologies today are, of course, quite 

different. Nevertheless, if it is true that the pace of technological change is accelerating and if 

the impact is varied across industries, then many workers will need new occupations, new 

skills, new ways of working in organizations, and, perhaps, new locations.  It is not surprising 

that we see experiments with new types of apprenticeship and work-study programs, new 

forms of skill certification for skills learned on the job, new forms of training such as 

MOOCs, and a general rising discussion of the need for “lifelong learning” incorporated into 

education systems. Other changes could reduce barriers to employee mobility across 

occupations (occupational licensing) or locations (land use, zoning). 

In addition, workers may need income support in order to make such transitions. 

While relatively few workers have been displaced by automation in the Netherlands so far, 

the evidence shows that those displaced workers suffer extended unemployment and income 

losses that are not offset by the current safety net, including unemployment, welfare, and 

disability payments (Bessen et al. 2019). Nor are most of these losses offset by early 

retirement or self-employment. This suggests a need for at least some form of temporary 

income support beyond the current safety net. While discussion of specific policy proposals 

is beyond the scope of this paper, the main idea here is that the range of policies needed to 

address large scale worker transitions is quite different from those aimed at dealing with the 

supposed imminent rise of permanent unemployment.
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Conclusion

This paper, using empirical evidence and a theoretical model, argues that the 

elasticity of demand with respect to labour productivity substantially affects whether 

productivity-improving technological change will increase or decrease industry employment. 

While the pace of productivity growth determines the magnitude of employment change, the 

elasticity of demand determines the sign of the effect. Moreover, both historical evidence 

and the model provide reason to expect substantial heterogeneity across industries in their 

response to new productivity-improving technologies. If so, this implies that a critical policy 

challenge of new automation technologies is the disruptive transitions for workers as some 

industries grow while others shrink. Whether automation brings a decline in aggregate 

employment depends not just on these individual industry responses, but also on spillovers, 

effects on downstream producers, and general equilibrium effects on labour demand.25 

Regardless of the aggregate effect, this paper argues that new productivity-improving 

technologies will likely bring a disruptive reallocation.

Much of the literature on automation and deindustrialization generally abstracts away 

from considerations of demand, assuming that demand is inelastic and static. Using long 

time series, this paper looks at the changes in the elasticity of demand for the US cotton 

textile, primary steel, and motor vehicle industries. A non-parametric analysis rejects the 

hypotheses that these elasticities were always less than one and were static. Demand was 

highly elastic during the early years of automation in these industries, but it became highly 

inelastic by the mid-20th century.

25 See Autor and Salomons (2018) for some estimations of these effects.
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A theoretical model explains why demand elasticity changed and also why this 

change altered the direction of employment growth: during the early years, there were large 

unmet needs, so the price reduction brought by productivity-improving technology spurred 

strong demand growth. Demand grew faster than labour productivity, resulting in increased 

employment. Later, however, demand was satiated; ongoing automation still reduced prices, 

but these reductions did little to spur demand, resulting in job losses. Moreover, the paper 

shows that this pattern of declining elasticities holds for common distribution functions, 

suggesting it may be relevant to understanding the impact of new technologies today. This 

investigation thus highlights the importance of demand heterogeneity for understanding the 

impact of new technologies, but it also suggests how to analyse that heterogeneity. 

At least since the Industrial Revolution, observers of automation have incorrectly 

predicted the imminent demise of demand for labour. For example, in 1930, Keynes (1930), 

anticipating continued productivity growth, predicted that in 100 years his grandchildren 

would enjoy a fifteen-hour workweek. Now that we are close to that 100-year mark, the 

average workweek for OECD nations is 34 hours. Yet Keynes was right about productivity 

growth. In the US, the 1930 level of mean GDP per capita could be realized in 15 hours on 

average by 1977. What Keynes did not grasp was the depth of human wants and desires, that 

is, the depth of consumer demand. The reason we don’t work 15 hours is that we choose to 

demand more goods and services that technology has made cheaper and better. A similar 

underestimation of demand lies behind many other failed predictions of automation-induced 

mass unemployment.

Of course, this time is different. Now white collar and professional tasks are being 

taken over by machines and perhaps the pace and breadth of change are greater than past 

episodes of automation. However, not everything is different. Human needs and wants are not 
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very different and are not likely to be very different in 10 or 20 years. Because demand is not 

likely to change rapidly, empirical analysis of current demand elasticities and of the current 

impacts of productivity-improving technologies are critical to inform policy regarding the 

expected new wave of technology. And demand may not only be elastic enough to mitigate 

unemployment effects, but it is likely to have different effects across industries as well.

Appendix

Propositions

To simplify notation, let . Then, keeping wages constant,𝐺𝑥 = 1

𝜖(𝑝) =
𝑝 𝑓(𝑝)

1 ― 𝐹(𝑝)

so that

Note that the second and 
∂ 𝜖(𝑝)

∂ 𝑝 =
𝑓′𝑝

1 ― 𝐹 +
𝑓2𝑝

(1 ― 𝐹)2 +
𝑓

1 ― 𝐹 = 𝜖(𝑓′
𝑓 +

𝑓
1 ― 𝐹 +

1
𝑝)

third terms in parentheses are positive for ; the first term could be positive or negative. 𝑝 > 0

A sufficient condition for  is
∂𝜖
∂𝑝 ≥ 0

(A1)

𝑓′
𝑓 +

𝑓
1 ― 𝐹 ≥ 0.

Proposition 1. For a single peaked distribution with mode , for  ,  so 𝑝 𝑝 < 𝑝 𝑓′ ≥ 0

that 
∂𝜖
∂𝑝 ≥ 0 . 

Proposition 2. For each distribution, I will show that
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Taken together, these conditions imply that for 
∂𝜖
∂𝑝 ≥ 0,     lim

𝑝→0
𝜖 = 0,    lim

𝑝→∞
𝜖 = ∞.

sufficiently high price, , and for a sufficiently low price, 𝜖 > 1 𝜖 < 1.

a. Normal distribution 

𝑓(𝑝) =
1
𝜎𝜑(𝑥),      𝐹(𝑝) = Φ(𝑥),      𝜖(𝑝) =

𝑝
𝜎

𝜑(𝑥)
(1 ― Φ(𝑥)),     𝑥 ≡

𝑝 ― 𝜇
𝜎

where  and  are the standard normal density and cumulative distribution 𝜑 Φ

functions respectively. Taking the derivative of the density function,

𝑓′

𝑓 +
𝑓

1 ― 𝐹 = ―
𝑥
𝜎 +

𝜑(𝑥)
𝜎 (1 ― Φ(𝑥)).

A well-known inequality for the normal Mills’ ratio (Gordon 1941) holds that for 

x>0,26

(A2)

𝑥 ≤
𝜑(𝑥)

1 ― Φ(𝑥).

Applying this inequality, it is straightforward to show that (A1) holds for the normal 

distribution. This also implies that  By inspection, lim
𝑝→∞

𝜖 = ∞. 𝜖(0) = 0.

b. Exponential distribution

𝑓(𝑝) ≡ 𝜆𝑒 ―𝜆𝑝,      𝐹(𝑝) ≡ 1 ― 𝑒 ―𝜆𝑝,    𝜖(𝑝) = 𝜆𝑝,     𝜆,𝑝 > 0.

Then

𝑓′

𝑓 +
𝑓

1 ― 𝐹 = ―𝜆 + 𝜆 = 0

so (A1) holds. By inspection,  and 𝜖(0) = 0 lim
𝑝→∞

𝜖 = ∞.

26 I present the inverse of Gordon’s inequality.
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c. Uniform distribution

𝑓(𝑝) ≡
1
𝑏,     𝐹(𝑝) ≡

𝑝
𝑏,      𝜖(𝑝) =

𝑝
𝑏 ― 𝑝,     0 < 𝑝 < 𝑏

so that

𝑓′

𝑓 +
𝑓

1 ― 𝐹 =
1

𝑏 ― 𝑝 > 0.

By inspection,  and 𝜖(0) = 0 lim
𝑝→𝑏

𝜖 = ∞.

d. Lognormal distribution

𝑓(𝑝) ≡
1

𝑝𝜎𝜑(𝑥),      𝐹(𝑝) ≡ Φ(𝑥),       𝜖(𝑝) =
1
𝜎

𝜑(𝑥)
(1 ― Φ(𝑥)),    𝑥 ≡

ln 𝑝 ― 𝜇
𝜎

so that

∂ 𝜖(𝑝)
∂ 𝑝 = 𝜖(𝑓′

𝑓 +
𝑓

1 ― 𝐹 +
1
𝑝) = 𝜖( ―

1
𝑝 ―

𝑥
𝑝𝜎 +

𝜑
𝑝𝜎(1 ― Φ) +

1
𝑝).

Cancelling terms and using Gordon’s inequality, this is positive. And taking the limit 

of Gordon’s inequality,  By inspection lim
𝑝→∞

𝜖 = ∞. lim
𝑝→0

𝜖 = 0.

Historical data sources

I obtain data on production employees for cotton and steel from Lebergott (1966, 

see also US Bureau of the Census 1975) through 1950, and from 1958 on from the NBER-

CES manufacturing database for SIC 2211 and 2221 (broadwoven fabric mills, cotton and 

manmade fibres and silk) and SIC 3312 (primary iron and steel). The former measures the 

number of wage earners while the more recent series measure production employees. I find 

that these series are reasonably close for overlapping years. For 1820 in cotton, I estimate 

5,600 full time equivalent workers producing in households, using estimates of household 

production and Davis and Stettler’s (1966) estimates of output per worker. For the auto 
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industry, I use the BLS Current Employment Statistics series for motor vehicle production 

workers from 1929 on. For 1910 and 1920, I obtained the number of employees in the 

motor vehicle industry from the 1% Census samples (Ruggles et al. 2015) and prorated those 

figures by the ratio of BLS production workers to Census industry employees for 1930.

Weekly hours data for motor vehicles also come from the BLS from 1929 on. For 

earlier years and for cotton and steel before 1958, I use Whaples (2001) before 1939, linearly 

interpolating for missing year observations. From 1939 to 1958 I use the BLS Current 

Employment Statistics series for manufacturing production and nonsupervisory personnel. 

In cotton and steel, I use the NBER-CES data for production hours from 1958 on (this 

comes from the BLS industry data).

For cotton production, I begin with Davis and Stettler’s (1966, Table 9) estimates of 

yards produced per man-year for 1820 and 1831 multiplied by the estimate of the number of 

cotton textile wage earners for those years (I assume productivity was the same in 1830 and 

1831). For 1820, I estimate that an additional 9.6 million yards were produced in households 

based on data from Tryon (1917). From 1830 on, Tryon’s estimates indicate little cotton 

cloth was produced at home. From 1840 through 1950, I use estimates of the pounds of 

cotton consumed in textile production times three yards per pound (US Bureau of the 

Census 1975 and Statistical Abstracts, various years). This ratio is the historically used rule of 

thumb, but I also found that it applies reasonably well to a variety of twentieth century test 

statistics. While some cotton is lost in the production process (5% or less typically), these 

losses changed little over time. From 1930 on, I also include the weight of manmade fibres 

consumed in textile production. From 1958 on I found that the deflated output of SIC 2211 

and 2221 in the NBER-CES tracked the pounds of fibre consumed closely for the ten years 

when I had measures of both. I used the average ratio for these years to estimate yards of 
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cloth produced based on the NBER-CES real output from 1958 on. For steel, my output 

measure is the short tons of raw steel produced (Carter 2006). From 1913 through 1950, I 

measure motor vehicle production using the NBER Macrohistory Database series on 

passenger car and truck production. I obtained a figure for 1910 production from 

Wikipedia.27 From 1951 on, I use car and truck production figures from the Ward’s 

Automotive Yearbook, prorated to match the NBER series.

For consumption of motor vehicles, I use the Ward’s Automotive series on sales of 

passenger cars and trucks. For cotton and steel, I add net imports to domestic production. 

For cotton from 1820 through 1950, I use the net dollar imports of cotton manufactures 

divided by the price of cloth. From 1820 through 1860, I use Sandberg’s (1971) estimate of 

the price of British imports; from 1860 through 1950, I use the price of cotton sheeting (see 

below). From 1958 on, I use import penetration ratios from Feenstra (1958 though 1994) 

and Schott (1995 on). For steel, I use Temin’s (1964, p. 282) estimates for steel rail imports 

from 1860 through 1889. I use the Feenstra and Schott import penetration estimates from 

1958 on; I ignore steel imports between 1890 and 1957.

For prices, I use the series on cotton sheeting from 1820 through 1974 (Carter 2006, 

Cc205); for steel I use series for the price of steel rails, splicing together separate series for 

Bessemer, open hearth, standard, and carbon steel (Carter 2006, CC244-7). I obtain data on 

the labour share of output from various Census of Manufactures and the Annual Survey of 

Manufactures after 1958.

27 “U.S. Automobile Production Figures,” 
https://en.wikipedia.org/wiki/U.S._Automobile_Production_Figures (accessed Jan. 30, 2019).
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Tables

Table 1. Non-parametric Regressions and Estimates of Demand Elasticity

 A. Dependent Variable: ln D (log demand per capita) 
1 2 3

Cotton Textiles Primary Steel Auto

 ln 𝑠𝐴 0.71 ** -7.19 ** -12.43 **
(0.10) (1.50) (1.32)

 ( ln 𝑠𝐴)2 -0.13 ** -0.75 ** -0.92 **
(0.02) (0.15) (0.09)

 ln 𝑤 -0.71 8.68 * 4.51 **
(0.87) (4.03) (1.61)

 (ln 𝑤)2 0.03 -0.39 -0.21 *
(0.05) (0.21) (0.08)

N 52 35 61
R-squared 0.979 0.974 0.934

B. Dependent Variable: ln s (log labour share of output)

ln 𝐴 .016 .066 ** -.348 **
(0.010) (0.023) (0.051)

N 52 35 61
R-squared .053 .202 .442

C. Non-parametric Estimates of Demand Elasticity, 
∂ln 𝐷
∂ln 𝐴

Year Elasticity Year Elasticity Year Elasticity
1820 1.3 1870 2.2 1910 2.0

H0: elasticity=1 P = 0.008 P = 0.015 P = 0.000

1950 0.2 1950 -1.3 1951 0.4
H0: elasticity=1 P = 0.000 P = 0.000 P = 0.000

D. Model Estimates of Demand Elasticity, 
∂ln 𝐷
∂ln 𝐴

1820 1.5 1870 2.4 1910 9.2
1950 0.2 1950 0.3 1951 1.1

Note: Robust standard errors in parentheses. Constant term not reported. The wage, w, is real GDP per capita. 
The hypothesis tests are two-tailed F tests of the null hypothesis. Note that s∙A=w/p. The model estimates 
come from the specification of Table 2, Column 1.
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Table 2. Regressions of Per Capita Demand

1 2 3
Independent 
variable Labour productivity Labour productivity Price / wage

A. Cotton cloth, 1820 - 1995
𝜇 -0.24 (0.10)** 0.40 (1.36) -1.34 (.84)
𝜎 1.43 (0.15)*** 1.64 (0.29)*** 1.95 (.63)***
𝛾 134.60 (3.80)*** 135.17 (3.66)*** 174.48 (48.66)***
𝛼 -0.16 (0.32)

Observations 52 52 31
R-squared 0.993 0.993 0.988

B. Raw steel, 1860 – 1982
𝜇 5.04 (0.18)*** 4.85 (3.38) 1.39 (4.45)
𝜎 0.83 (0.18)*** 0.79 (0.50) 2.32 (1.32)*
𝛾 0.66 (0.05)*** 0.66 (0.07)*** 3.93 (8.07)
𝛼 0.05 (0.90)

Observations 35 35 34
R-squared 0.981 0.981 0.987

C. Motor vehicles, 1910 – 2007
𝜇 7.31 (0.04)***
𝜎 0.30 (0.06)***
𝛾 59.40 (2.78)***

Observations 61
R-squared 0.977

Note: Non-linear least squares estimates of equation (12) in columns 1 and 2 and equation (13) in column 3. 
Robust standard errors in parentheses; ***= significant at 1%; ** = significant at 5%; * = significant at 10%.
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