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a b s t r a c t 

When the novel coronavirus disease SARS-CoV2 (COVID-19) was officially declared a pandemic by the 

WHO in March 2020, the scientific community had already braced up in the effort of making sense of 

the fast-growing wealth of data gathered by national authorities all over the world. However, despite the 

diversity of novel theoretical approaches and the comprehensiveness of many widely established models, 

the official figures that recount the course of the outbreak still sketch a largely elusive and intimidating 

picture. Here we show unambiguously that the dynamics of the COVID-19 outbreak belongs to the simple 

universality class of the SIR model and extensions thereof. Our analysis naturally leads us to establish 

that there exists a fundamental limitation to any theoretical approach, namely the unpredictable non- 

stationarity of the testing frames behind the reported figures. However, we show how such bias can 

be quantified self-consistently and employed to mine useful and accurate information from the data. 

In particular, we describe how the time evolution of the reporting rates controls the occurrence of the 

apparent epidemic peak, which typically follows the true one in countries that were not vigorous enough 

in their testing at the onset of the outbreak. The importance of testing early and resolutely appears as 

a natural corollary of our analysis, as countries that tested massively at the start clearly had their true 

peak earlier and less deaths overall. 

© 2020 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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In December 2019 the novel coronavirus disease SARS-CoV2

COVID-19) emerged in Wuhan, China. Despite the drastic con-

ainment measures implemented by the Chinese government, the

isease quickly spread all over the world, officially reaching pan-

emic level in March 2020 [1] . From the beginning of the out-

reak, the international community braced up in the commend-

ble effort to rationalise the massive load of data [2,3] , painstak-

ngly collected by local authorities throughout the world. However,

pidemic spreading is a complex process, whose details depend

o a large extent on the behaviour of the virus [4,5] and of its

urrent principal vectors (we, the humans). Additionally, recorded

ata necessarily suffer from many kinds of bias, so that much in-

ormation is intrinsically missing in the data released officially. For

xample, the total number of reported infected bears the imprint

f the growing size of the sampled population. This major source

f non-stationarity should be properly gauged if one aims at ex-
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laining the observed trends and elaborate forecasts for the epi-

emics evolution. Similarly, the time series of recovered individu-

ls that are released officially are heavily unreliable, due to the un-

ven ability of different countries to trace asymptomatic or mildly

ymptomatic patients. 

In this letter, we demonstrate that overlooking these effects

nevitably leads to fundamentally wrong predictions, irrespective

f whether mean-field, compartment-based models [6,7] or more

ophisticate individual-based, stochastic spatial epidemic mod- 

ls [8,9] are employed. More precisely, it is important to realise

hat the populations of infected reported by national agencies do

ot provide a reliable picture to correctly identify the epidemics

eaks. The primary cause resides in the marked non-stationary

haracter of the testing activity. However, while sources of bias due

o differences in sampling and reporting policies among different

ountries are generally acknowledged, notably by studies applying

ayesian inference [10,11] and causal models [12] , surprisingly the

ritical issue of non-stationarity appears to have been significantly

verlooked in the literature on COVID-19. Nonetheless, as we show

n the following, save few creditable exceptions, the reporting

ate has generally increased substantially as the outbreak was
nder the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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o  
gathering momentum, along with the stepping up of the number

of tests conducted. Let us stress this point once more – any mod-

elling effort s will be pointless unless non-stationarity of reporting

is properly accounted for. 

While infected and recovered bear the marks of the convolu-

tion with unpredictably non-stationary reading frames, it can be

argued that the time series of deceased individuals provide a more

reliable picture of the true, bias-free underlying dynamics of the

disease. In fact, while there might have been inaccuracies in at-

tributing deaths to COVID-19, it can be surmised that these should

lead to systematic and reasonably stationary errors. 

Contrary to intuition, and to an excellent degree of accuracy,

a death-only analysis of the data shows that COVID-19 outbreaks

in all countries fall in the simple SIR universality class, mean-field

compartmental models originated by the seminal 1927 paper by

Kermack and McKendrick [13] . Importantly, this fact can only be

brought to the fore in the reduced space of deaths and their time

derivatives, as this allows one to filter out virtually all spurious

effects associated with non-stationary reading frames, which have

been systematically underestimated in the vast majority of reports.

Taken together, our analysis suggests that simple mean-field

models can be meaningfully invoked to gather a quantitative and

robust picture of the COVID-19 epidemic spreading. Additionally, as

a natural byproduct of our reasoning, we were able to calculate the

time-dependent reporting fractions for infected and recovered in-

dividuals. These provide a clear a-posteriori reading frame for the

relative position of the true epidemic peak and that observed from

the reported data, which is found to be typically shifted away ar-

tificially in the future. Furthermore, casting the SIRD dynamics as

a function of the deaths time series and its derivative leads us to

derive simple formulae that prove invaluable for real-time mon-

itoring of the disease. As an important corollary of our analysis,

doubts can be cast on all procedures targeted at estimating the re-

production index of the epidemics based on the raw time series of

infected (and recovered), i.e. not corrected for non-stationary test-

ing. 

How to look at the reported figures 

Within a simple mean-field compartmental model, people are

divided into different species [14] . For example, in the susceptible

(S), infected (I), recovered (R), dead (D) scheme (SIRD) [15] , any

individual in the fraction of the overall population that will even-

tually get sick belongs to one of the aforementioned classes. The

latter represent the different stages of the disease and their size

is used to model its time course. Let S 0 = S(0) be the size of the

initial pool of susceptible individuals. Then the SIRD dynamics is

governed by the following set of coupled differential equations ⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

˙ S = − r 
S 0 

SI 

˙ I = 

r 
S 0 

SI − ( a + d ) I 

˙ R = aI 
˙ D = dI 

(1)

where ˙ X stand for the time derivative of X = S, I, R, D . The param-

eter r represents the infection rate, i.e. the probability per unit

time that a susceptible individual contracts the disease when she

enters in contact with an infected person. The parameters a and

d denote the recovery and death rates, respectively. Note that,

S(t) + I(t) + R (t) + D (t) = S 0 + I 0 is an invariant of the SIRD dy-

namics, i.e. it remains constant as time elapses 1 In general, one
1 It is reasonable to assume that R (0) = 0 as this coronavirus has never been in 

contact with humans before. Furthermore, S(0) � I(0) � O(1) , which justifies the 

way Eqs. (1) are written down (see also Methods). 

t  

o  

w  

t  

r  
ould attempt to calibrate model (1) against the available time se-

ies for the infected, recovered and deaths, so as to determine the

est-fit estimates of r, a, d and S 0 . However, it may be argued that

his procedure amounts to over-fitting, due to the intrinsic high

orrelation between r and S 0 in the model. More commonly, a face-

alue figure for S 0 is assumed from the start, e.g. the size of a

ountry or of some specific region. However, this choice is some-

ow arbitrary, as the true basin of the epidemics can in principle

e determined meaningfully only a posteriori. 

More importantly, as argued above, there is a more fundamen-

al limitation to any attempt of adjusting a model to the raw fig-

res beyond specific, model-dependent issues. The cause is the

ime-varying bias in the reported data. Essentially, this translates

nto an a-priori unknown discrepancy between the true size of in-

ected and recovered and the figures released officially. The key ob-

ervation at this point is that the time series of deaths, D ( t ), can be

egarded as the only data set that returns a faithful representation

f the epidemics course. More precisely, it appears reasonable to

urmise that all unknown sources of errors on deaths can be con-

idered as roughly stationary over the time span considered. 

It is well-known that the SIR dynamics can be recast in a par-

icularly appealing form in the space ( ̇ R , R ) , R denoting in this case

he overall class of recovered and deceased [16,17] . When one dis-

inguishes between the two populations D and R (the recovered),

s in the SIRD dynamics (1) , a similar manipulation leads to (see

ethods) 

˙ 
 = f (D ) 

def = γ
(
1 − e −ξD 

)
− βD (2)

here γ = dS 0 , ξ = r/ (dS 0 ) and β = a + d. The differential

q. (2) is equivalent to the full set of Eq. (1) and the associated

onservation law. Overall, it provides an expedient and virtually

ias-free means of testing whether the time evolution of an out-

reak is governed by a SIRD-like dynamics. 

Fig. 1 shows very clearly that the COVID-19 outbreak falls in

he SIRD universality class. The data reported by national authori-

ies in different countries are plotted in the plane ( ̇ D , D ) and com-

ared with three-parameters fits performed with Eq. (2) . The qual-

ty of the fits appears remarkably good, irrespective of the country

nd the actual severity of the epidemics in terms of deaths and

eaths per day. Residual oscillations about the mean-field interpo-

ating trends are visible, pointing to interesting next-to-leading or-

er corrections, which would deserve further attention. 

It appears remarkable that a process that is inherently complex

nd unpredictably many-faceted can be accurately described in

erms of an effective, highly sim plified mean-field scheme, where

any factors are deliberately omitted, such as space and different

orts of population stratification. Of course, the effectiveness of SIR

chemes and simple modifications thereof are well-known [19,20] .

or example, a recent work shows that a modified SIR model

here the infection rate is let vary with time can be employed

o infer change points in the epidemic spread to gauge the effec-

iveness of specific confinement measures in Germany [18] . In an

arlier work, two of the present authors had considered a simi-

ar approach to elaborate predictions of the outbreak in Italy that

roved fundamentally right when compared with the evolution ob-

erved afterwards [14] . What Fig. 1 critically adds to the picture

s a bias-free confirmation that simple mean-field schemes can be

sed meaningfully to draw quantitative conclusions. 

The best-fit values of the reproduction number R 0 extracted

rom the above analysis should be considered as effective estimates

f the overall severity of the outbreak in different countries. In par-

icular, it can be argued that these should incorporate all sources

f non-stationarity left besides the time-dependent bias associated

ith the evolution of the testing rate. Most likely, these amount

o different degrees of (time-dependent) reduction of the infection

ate r , following the containment measures. Interestingly, we find
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Fig. 1. Universal behaviour of the COVID-19 outbreak in the ( ̇ D , D ) plane . When analysed in this space, outbreaks in different countries are described by the same three- 

parameters function f ( D ), Eq. (2) . The reported values of the effective reproduction number at t = 0 , R 0 are computed as R 0 = ξγ /β . The data for ˙ D are centred rolling 

averages performed over a window of 6 days. Residuals most likely contain the (possibly time-shifted) blueprints of specific containment measures [18] . 
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hat, rather generally, the evolution of such non-stationary SIRD

ynamics falls into the same universality class in the plane ( ̇ D , D )

s signified by f ( D ), Eq. (2) (see also Section 3 in the supplemen-

ary material). More precisely, it turns out that a reduction of r

y a factor f < 1 over a certain time window simply corresponds

o a proportional rescaling of the reproduction number to a lower

alue, R 0 → R 0 f . A similar conclusion holds if the non-stationarity

auses the opposite effect, that is, f > 1. This might be the case,

or example, of overlooked hotbeds or large undetected gatherings

hat cause the infection to accelerate at a certain point in time. Re-

arkably, whatever the direction, it can be proved that this rescal-

ng is independent of the typical time scale over which the transi-

ion r → fr unfolds, as well as the point in time that marks its onset

see supplementary material). 

An important corollary of our analysis is that the observed epi-

emic peak displayed by the time series of the measured infected,

 M 

( t ), typically occurs later than the true peak, the more so the
ore the testing rate is ramped up during the outbreak. The cor-

ect occurrence of the peak and a comprehensive understanding

f how the testing activity controls the apparent evolution of the

pidemics can be obtained with the following simple argument.

n general, one can define two time-dependent reporting fractions ,

auging the unknown disparity between the true and the mea-

ured populations 

I (t) = 

I M 

(t) 

I(t) 
αR (t) = 

R M 

(t) 

R (t) 
(3) 

here R M 

( t ) refers to the reported population of recovered per-

ons. Taking into account the first definition in Eq. (3) , differen-

iation of the last equation in (1) with respect to time gives 

¨
 (t) = 

d 

αI (t) 
˙ I M 

(t) − d 

α2 (t) 
I M 

(t) ̇ αI (t) (4)

I 
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Fig. 2. The derivative of the reporting fraction of infected controls the apparent epidemic peak. Top panels: fraction of true recovered reported, αR ( t ) (grey shaded 

regions) and fraction of true infected reported, αI ( t ), computed as described in the text. The shaded regions correspond to an assumed mortality m = 0 . 012 ± 0 . 005 [21] . The 

thick lines mark averages on the last 15% portions of the data ( 〈 αI,R 〉 T ), and first 40% ( 〈 αI 〉 0 ), while the dashed lines denote the overall average values of αI,R computed over 

the whole available time span. Bottom panels. The reported infected are compared to the rescaled deaths/day, I 0 (t) 
def = 

˙ D αI (0) /d, i.e. the infected that would have been 

reported if the reporting fraction had remained constant at its initial value αI (0). Technically, δ = d/αI (0) is obtained as the slope δ of a linear fit of ˙ D vs I M in the very 

early stage of the outbreak. The shaded regions correspond to the least-square errors found on δ. As soon as the testing rate starts varying appreciably, the two trends I 0 ( t ) 

and I M ( t ) diverge. If the testing rate is ramped up, the infected reported seem to flag an increase in the outbreak severity (Italy). Conversely, if the testing rate slows down 

(Germany), the reported infected underestimate the true peak. In particular, in this case the peak can be alarmingly anticipated. China shows a marginal behaviour, where 

the two peaks coincide, consistently with a remarkably stable reporting fraction of infected. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t  

t  

t  

h  

c  

f  

i  

t  

w  

p  

r  

i  

v

 

i  

s  

i  

o  

m  

f  

w  

i  

f  

w  

e

 

d  

n  

d  

c  

E  

o  

a  
The apparent epidemic peak occurs when 

˙ I M 

(t) = 0 , whereas we

know from the fact that the epidemics is governed by a SIRD-

like dynamics that the true peak occurs when D̈ = 0 , i.e. when the

number of deaths/day reaches a maximum. Thus, from Eq. (4) one

immediately sees that whether the apparent peak is observed be-

fore or after the true peak depends on the sign of the rate of

reporting, ˙ αI (t) . More precisely, if the testing activity is steadily

ramping up ( ̇ αI > 0) , the true peak will occur earlier than the ap-

parent one. This is because the reported infected will have a max-

imum for D̈ < 0 , i.e. past the maximum of the ˙ D . Conversely, if the

testing rate decreases, this will anticipate the apparent peak, giv-

ing the false impression that the worst might be over while the

true number of infected is in fact still increasing. We find that this

analysis applies to all countries considered in this paper (see also

supplementary material), whereby either the former or the latter

scenarios are invariably observed. 

Fig. 2 illustrates the above considerations for the outbreak dy-

namics in three representative countries, each displaying one of

the two characteristic behaviors. Technically, in order to compute

the reporting fractions αI , αR , one needs to know the mortality

m = d/β = d/ (a + d) . A good country-independent estimate for m

has been reported recently by looking at the infinite-number of

test extrapolation [21] , which yields m = 0 . 012 . Hence, combining

Eq. (1) with the definitions (3) , it is not difficult to obtain 

αI (t) = mβ
I M 

(t) 

˙ D (t) 
αR (t) = 

m 

1 − m 

R M 

(t) 

D (t) 
(5)

where β is estimated from the fits of the SIRD model in the plane

( ̇ D , D ) . Direct inspection of Fig. 2 confirms the above reasoning on

the relative position in time of the apparent and true peaks. For

example, it can be seen that tests have increased exponentially

in Italy, starting from the end of March, which caused the appar-

ent peak to occur nearly a month after the true one. Conversely,
he testing activity has been vigorous in Germany at the onset of

he outbreak, but appears to have slowed down substantially as

he epidemics progressed. As a consequence, the apparent peak

as been reported while the epidemics was still growing. In both

ases, our estimate is consistent with the fact that only 15 % of in-

ected persons are effectively reported. China seems to provide an

nstance of the marginal case ˙ αI = 0 . Despite an early ramping up,

he reporting fraction of infected appears to be remarkably stable,

hich is consistent with the co-occurence of the true and the ap-

arent peaks. According to the data, the testing activity has been

esolute since the beginning (only about half of the infected elud-

ng tracing), and has culminated with a scenario compatible with

irtually all infected individuals being traced. 

The calculations reported in Fig. 2 also confirm that counting

nstances of recovery is a much subtler task. Typically, countries

eem to have needed some adjustment time to set up robust count-

ng protocols, as it is apparent from the large fluctuations that are

ften observed in the trends of αR at early times (see also supple-

entary material). Another interesting feature that emerges clearly

rom the comparison of αI and αR is the average recovery time,

hich can be inferred for example by direct inspection of the test-

ng activity in Italy. The curve αR ( t ) appears to be shifted in the

uture by about 10 days with respect to αI ( t ), which is consistent

ith the present consensus estimate of an average time for recov-

ry of two weeks. 

Our analysis shows how to pinpoint the true peak of the epi-

emics – the maximum of the deaths/day time series, ˙ D . It is thus

atural to investigate how the different true peaks compare among

ifferent countries once these time series have been brought to a

ommon time origin. This is illustrated in Fig. 3 for a number of

uropean countries. It can be clearly appreciated that the apogee

f the outbreak in different countries does not occur later than

bout one month after the first ten deaths reported. It is interest-
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Fig. 3. The true epidemic peak occurs within 30 days after the first ten deaths, 

the earlier the higher the initial testing rate. When shifted so that they coincide 

at the day where ten new deaths were first reported, the ˙ D time series reveal that 

the true epidemic peak occurs inevitably rather early in the outbreak, visibly not 

later than one month after the first ten casualties reported. Earlier vigorous testing 

is obviously key in containing the outbreak (see also discussion in the text). 
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ng to observe that in countries where the testing rate was vigor-

us at the onset of the outbreak (large 〈 αI 〉 0 ), e.g. Austria, Switzer-

and, Belgium, Germany 2 , the peak seems to occur earlier with

espect to countries that have started ramping up their testing ca-

acity later into the outbreak, such as Italy, Spain, France and U.K.

see supporting information). This might just have the obvious ex-

lanation that early tracking of infected individuals enables more

ffective isolation from the start, thus leading to a less severe evo-

ution of the outbreak as there simply are less contagious peo-

le able to propagate the disease. It is also interesting to observe

hat peak position and height show some correlation with the ini-

ial reproduction numbers measured in the ( ̇ D , D ) plane (see again

ig. 1 and Tables S1 and S2 in the supplementary material). With

ome notable exceptions (again Netherlands and Denmark), coun-

ries that totalised higher deaths/day at peak tend to be charac-

erised by higher values of R 0 . Overall, effective and timely test-

ng seems to have been the key to successful containment strate-

ies, as it is by now widely advocated [22] , as opposed to muscular

ockdowns imposed later into the outbreak. 

ummary and discussion 

In summary, the observed behavior of the early 2020 COVID-19

utbreak has raised many diverse and puzzling issues in different

ountries. Many of them have adopted drastic containment mea-

ures, which had some effect on the spread of the virus but also

eft large sectors of the population world-wide grappling with the

aunting perspective of pernicious economic recessions. On their

ide, scientists from all disciplines are having a hard time identi-

ying recurring patterns that may help design and tune more ef-

ective response strategies for the next waves. In this letter we

ave shown that the spread of the epidemics caused by this elu-

ive [4] pathogen falls into the universality class of SIR models and

xtensions thereof. Based on this fact, an important corollary of

ur analysis is that early testing is not only key in making sense of
2 Netherlands seem to be a remarkable exception to this observation (see supple- 

entary material). 

p

R

he reported figures, but also in controlling the overall severity of

he outbreak in terms of casualties. 

It is intrinsically difficult to disentangle the effects imposed by

ontainment measures from the natural habits of a given commu-

ity in terms of social distancing. For example, Italy is recording

hree times as many deaths per inhabitant than Switzerland as we

rite. However, while it is true that Switzerland seemed to have

ested nearly ten times as much initially (see supplementary ma-

erial), it is also true that that country has never been put in full

ockdown as it was decided in Italy. At the same time, Swiss peo-

le are known for their law-abiding attitude and social habits that

ake (imposed or suggested) social distancing certainly easier to

aintain than in southern countries such as Italy. 

The key message of this letter is that simple models should not

e dismissed a priori in favour of more complex and supposedly

ore accurate schemes, which unquestionably go into more detail

ut at the same time rely necessarily on a large number of param-

ters that it is hard to fix unambiguously. All in all, we can state

ith certainty that vigorous early testing and accurate and trans-

arent self-evaluation of the testing activity, assuredly virtuous at-

itudes in general, should be considered all the more a priority in

he fight against COVID-19. 

ata 

The data used in this paper span the interval 1/22/20 - 5/16/20

nd have been retrieved from the github repository associated with

he interactive dashboard hosted by the Center for Systems Sci-

nce and Engineering (CSSE) at Johns Hopkins University, Balti-

ore, USA [23] . 

ethods 

In this section we derive Eq. (2) and review the definition of the

ime-dependent reproduction rate R (t) . Combining the first and

ast equation in (1) we get 

dS 

dD 

= − r 

dS 0 
D (M.1) 

hich can be readily integrated with the initial condition D (0) = 0 ,

iving 

(t) = S 0 e 
−ξD (t) (M.2) 

ith ξ = r/ (dS 0 ) . Furthermore, since R (0) = 0 , one has from

q. (1) that R (t) = (a/d) D (t) . Taking into account that by definition

(t) = 

˙ D /d, the conservation law, S(t) + I(t) + R (t) + D (t) = S 0 + I 0 ,

an be recast in the following form 

 0 + I 0 = S 0 e 
−ξD + 

˙ D 

d 
+ 

(
a 

d 
+ 1 

)
D (M.3)

ultiplying through by d and taking into account that S 0 � I 0 =
(1) , yields directly Eq. (2) with 

= S 0 d (M.4) 

= a + d (M.5) 

= 

r 

dS 0 
(M.6) 

We now turn to discussing the definition of R (t) . The second

quation in (1) can be rewritten as 

˙ 
 = ( a + d ) 

(
r 

a + d 

S 

S 0 
− 1 

)
I (M.7) 

ollowing standard convention, we define the time-dependent re-

roduction number as 

 (t) = 

r 

a + d 

S 

S 
(M.8) 
0 
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which, for t = 0 , yields (see Eqs. (M.4) , (M.5), (M.6) ) 

R 0 
def = R (0) = 

r 

a + d 
= 

ξγ

β
(M.9)

From (1) one readily obtains 

R (t) = 1 + 

˙ I 

˙ R + 

˙ D 

(M.10)

an expression which can be in principle employed to track the evo-

lution in time of the epidemics. Recall, however, that only I M 

( t ) and

R M 

( t ) are accessible to direct measurements. The associated report-

ing fractions are not known a priori and this may severely bias the

analysis if the reported figures are used in Eq. (M.10) or extensions

thereof. To overcome this limitation, it is expedient to combine the

definition (M.8) with Eq. (M.2) to obtain a closed expression for R
that only depends on D , namely 

R (D ) = R 0 e 
−ξD (M.11)

Eq. (M.11) can be used to estimate the time evolution of the

reproduction number without the bias introduced by the non-

stationarity of the reporting activity. In the supplementary ma-

terial, it is shown that the curve of the infected I peaks at D =
γ log R 0 /βR 0 . Plugging the latter expression into the right-hand

side of Eq. (M.11) yields R ( D ) = 1 , as it should for consistency re-

quirements. 
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