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Highlights 

 We combine country-industry data on robot adoption and occupations  

 We exploit differences in the industry’s share of tasks replaceable by robots 

 Robot adoption relates to a fall in routine manual task-intensive jobs 

 This is observed in high-income countries, but not in developing economies 
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Abstract 

This paper examines the impact of industrial robots on jobs. We combine data on robot adoption and 

occupations by industry in thirty-seven countries for the period from 2005 to 2015. We exploit 

differences across industries in technical feasibility – defined as the industry’s share of tasks replaceable 

by robots – to identify the impact of robot usage on employment. The  data allow us to differentiate 

effects by the routine-intensity of employment. We find that a rise in robot adoption relates significantly 

to a fall in the employment share of routine manual task-intensive jobs. This relation is observed in high-

income countries, but not in emerging market and transition economies. 

Keywords: Robots, tasks, occupations, employment 

JEL: E23; J23; O30 
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1. Introduction 

Rapid improvements in robot capabilities have fuelled concerns about the implications of robot 

adoption for jobs. While the creation of autonomous robots with flexible 3D movement continues to be 

a major challenge to engineers, rapid progress is being made. Robots can now perform a variety of tasks, 

such as sealing, assembling, and handling tools. As robot capabilities continue to expand and unit prices 

fall, firms are intensifying investment in robots (Frey and Osborne, 2017; Graetz and Michaels, 2018; 

Acemoglu and Restrepo, 2020). What is the impact of robot adoption on labour demand? Do robots 

substitute for tasks previously performed by workers? 

The main contribution of this paper is to empirically study the impact of industrial robots on the 

occupational structure of the workforce across industries in a set of high-income as well as Emerging 

Market and Transition Economies (EMTEs). We combine a large and detailed occupations database with 

data on industrial robot deliveries from the International Federation of Robotics. The database on 

occupational employment from Reijnders and de Vries (2018) allows us to examine the share of 

employment in occupations with a high content of routine tasks – i.e. tasks that can be performed by 

following a well-defined set of procedures. We delineate occupations along two dimensions of the 

characteristics of tasks performed, namely ‘analytic’ versus ‘manual’, and ‘routine’ versus ‘non-routine’.1 

We thus distinguish four key occupational groupings, namely routine manual, routine analytic, non-

routine manual, and non-routine analytic task-intensive occupations (as in Autor et al. 2003; Reijnders 

and de Vries 2018; Cortes et al. 2020). We follow Graetz and Michaels (2018) in constructing measures 

of robot adoption by country-industry pairs and relate these to changes in occupational employment 

shares. Our sample covers 19 industries for 37 countries at varying levels of development from 2005 to 

2015, and includes major users of industrial robots, such as the Peoples Republic of China (PRC), Japan, 

South Korea, Germany, and the United States. Our main finding is that country-industry pairs that saw a 

more rapid increase in robot adoption experienced larger reductions in the employment share of 

routine manual jobs.  

Our approach is motivated by the following economic considerations. Firms produce a variety of 

products using a continuum of tasks (Acemoglu and Autor, 2011), and these products differ in the 

number of tasks that can be performed by robots (Graetz and Michaels, 2018). For example, the share of 

                                                             
1 The distinction between manual and analytic occupations is based on differences in the extent of mental versus 
physical activity. 
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replaceable tasks by robots differs between apparel and automotive and appears larger in the latter.2 

This gives rise to differences across industries in the technical feasibility of robots substituting tasks 

previously performed by humans. Advances in machine capabilities expand the set of tasks carried out 

by machines (Acemoglu and Restrepo, 2018). Firms will adopt robots if it is technically feasible and the 

profit gains exceed the costs of purchasing and installing robots. Given higher wages in advanced 

countries, the technical constraints to robots replacing tasks are more likely to bind for firms in these 

countries. Hence, improvements in robot capabilities would result in a larger employment response in 

advanced countries compared to developing countries. 

We use these economic insights in our analysis. In particular, the technical feasibility of adopting robots 

guides our instrumental variables (IV) strategy to identify the causal relation between robots and labour 

demand. Economic feasibility motivates our distinction of the impact of robot adoption between 

advanced and developing countries. Using two-stage least squares (2SLS) estimation, we find that robot 

adoption lowers the employment share of routine manual occupations. This relation is observed in high-

income countries, but not in emerging market and transition economies. 

This paper relates to recent studies that examine the impact of robot adoption on socio-economic 

outcomes. Graetz and Michaels (2018) find that robot adoption contributed to an increase in 

productivity growth across industries in high-income countries between 1993 and 2007. Their findings 

suggest that robot adoption did not reduce employment, which is corroborated in this paper. This is also 

observed by Dauth et al. (2019), but not by Acemoglu and Restrepo (2020), who examine geographic 

variation in robot adoption across the United States and find that robots are labour replacing. Dauth et 

al. (2019) use detailed linked employer-employee data for Germany to show that displacement effects 

are cancelled out by reallocation effects, such that in the aggregate no employment effects from robot 

adoption are observed. Data availability did not allow Graetz and Michaels (2018) to examine the impact 

of robots on workers that perform different tasks. Yet, Autor (2015) emphasizes that workers with 

routine task-intensive occupations are most likely to be affected by automation. This paper aims to 

contribute to our understanding of the impact of robots on such occupational shifts. 

The remainder of this paper is organized as follows. Section 2 reviews the key theoretical mechanisms 

between automation and labour demand. Section 3 describes the methodology and instrumental 

variables. Section 4 documents patterns in the occupational structure of the workforce and robot 

                                                             
2 See e.g. the Economist, 24 August 2017, “Sewing clothes still needs human hands. But for how much longer?” 
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adoption. Section 5 empirically studies the impact of robot adoption on the task content of labour 

demand. Section 6 concludes. 

 

2. Theoretical framework 

This section starts with a discussion of robot adoption in the context of a traditional capital-labour 

model. In this model, technology is factor-augmenting: it increases the efficiency of one of the 

production factors employed (Acemoglu and Autor, 2011). The model puts the focus on the 

complementarity and substitutability between robots and tasks performed by workers. We then 

describe recent modelling efforts that emphasize the ability of machines to replace workers in a 

widening range of tasks (Acemoglu and Restrepo, 2018). These models help to clarify mechanisms by 

which robots may impact labour demand and motivate our empirical analysis. 

The models we describe analyse the impact of automation. Automation refers to computer-assisted 

machines, robotics, and artificial intelligence (Acemoglu and Restrepo, 2018). Thus, robots are a subset 

of automation. Robots are driven by algorithms, which have become increasingly complex. They can 

now operate without requiring anyone to explicitly program the mechanisms of the tasks performed. 

Yet, not all algorithms drive a physical machine. In fact, many algorithms are embodied in devices or 

applications. Once these algorithms are designed, they can be used for many tasks anywhere and at any 

time. For robots, the algorithms are embodied in the machines. Expanding the range of tasks performed 

by robots thus requires investing in robots, i.e. robots are rival (Martens and Tolan, 2018). This contrasts 

to algorithms, which are non-rival in nature. Robots are more frequently studied in empirical work 

because of the availability of statistics on their use. However, given the properties of robotics, studies 

that use robot data capture only part of the impact of automation on labour. 

In the traditional model, automation enhances the productivity of workers by complementing the tasks 

they perform (see e.g. Autor et al. 1998; Feenstra, 2008; Van Reenen 2011). Yet, for workers who 

perform tasks that can be substituted by automation, increasing availability of machines will lower their 

labour demand. Scholars have argued that new technologies tend to substitute for occupations that are 

intensive in routine tasks, such as assemblers, and complement non-routine task-intensive occupations, 

such as managers and technical scientists (Autor et al. 2003; Van Reenen 2011; Goos et al. 2014; Dauth 

et al. 2019). This is because for routine tasks, such as monitoring, measuring, controlling, and 

calculating, there are well-specified procedures which allow the task to be automated. Yet, knowing the 
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rules that govern task procedures is not a trivial requirement. For many non-routine tasks, such as those 

requiring creativity and problem-solving skills, automation is difficult and rather complements the 

performance of these tasks done by humans. In line with this reasoning, an analysis for Western 

European countries by Goos et al. (2014) finds that recent technological progress has been replacing 

workers doing routine tasks. This is referred to as “routine-biased technological change” (RBTC).3 

Predictions in the traditional model are straightforward. Firms adopt robots if it is economically feasible 

to do so, which is the case when profits exceed purchasing and installation costs. Therefore, substitution 

of robots for routine tasks is more likely in countries with higher wage levels, and there a fall in the fixed 

costs or the rental price will result in an increase in robot adoption (Graetz and Michaels, 2018).  

Recent modelling efforts by Acemoglu and Restrepo (2018) add a distinctive feature of automation: the 

technical ability of machines to replace workers in a widening range of tasks. They split the production 

process into tasks done by workers and machines. Advances in machine capabilities expand the set of 

tasks carried out by machines and replace labour, thus lowering labour demand. 

However, robotic automation technologies also result in the creation of new tasks that cannot be done 

by machines, such as programming, design, and maintenance of high-tech equipment (Acemoglu and 

Restrepo, 2019). This ‘re-instatement effect’ increases labour demand. The combination of tasks 

displaced by robots and the re-instatement of new tasks determine the reallocation of tasks between 

workers and machines. 

Complementarity between man and machine in the Acemoglu and Restrepo (2018) model originates 

from two indirect effects that come on top of complementarity effects in the traditional model (Martens 

and Tolan, 2018). The first is a price-productivity effect whereby robot adoption lowers prices of 

produced goods, leading the industry to expand sales and increase its demand for labour. The second is 

a scale-productivity effect whereby lower aggregate goods’ prices enable the (local) economy to expand 

and thus also increase labour demand. The overall impact of robotization on labour demand then 

depends on whether the displacement or the complementary effects dominate. So far, empirical 

evidence on the aggregate employment effects from robotization are inconclusive.4 

                                                             
3
 Autor et al. (2003) examine the impact of computerization on labour demand in U.S. industries from 1960-1998. 

They find a positive relation between the demand for non-routine tasks and computerizing industries. Ross (2017) 
and De La Rica et al. (2020) study the impact of RBTC on the wage premium for job tasks. 
4 Acemoglu and Restrepo (2020) find that robot adoption lowers labour demand in US local labour markets. Dauth 
et al. (2019) argue in an analysis for Germany that workers displaced by robots reallocate to services and there is 
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In line with Acemoglu and Restrepo (2018), Graetz and Michaels (2018) model the production process as 

a continuum of tasks. Yet, Graetz and Michaels (2018) assume that products differ in the share of tasks 

that can be carried out by machines. Garments provide a clear example: sewing garments is a complex 

process that requires human intuition and dexterity, which is difficult to program. In contrast, it has 

proven easier to program robots to perform tasks in automobile assembly lines.5 Automation of car 

assembly lines has helped to reduce error rates and enhances the control of repeatable tasks. The 

technical feasibility of machines taking over tasks thus differs by industry. 

In this expanded model, the improvement of machine capabilities may drive automation.6 That is, if 

robot adoption is constrained by the production nature of certain industries, the rental price of robots 

does not matter. Rather, it is an expansion in machine capabilities that will drive automation. Given that 

labour costs are higher in advanced economies, the relaxing of technological constraints by expanding 

robot capabilities will lead to higher economic incentives for robotization in advanced countries and 

hence stronger employment responses.  

The traditional and expanded model capture the key economic mechanisms driving robot adoption and 

their employment effects. The PRC is an interesting case to illustrate how additional factors drive robot 

adoption. Wage levels in China are below high-income countries, but it is the world’s largest adopter of 

industrial robots (Cheng et al. 2019). This seems counterintuitive to the modelling of robot adoption. 

Yet, robot use in China does coincide with rising wages and a slowdown in the growth of its working-age 

population. Besides labour costs, concerns over product quality and production expansion are found to 

influence decisions by firms in adopting robots (Cheng et al. 2019). In addition, the Chinese government 

has initiated various programs and provides subsidies that encourage the development of the robotics 

industry (Yang, 2017; Lin, 2018).  

Robots may also reverse the trend to relocate fabrication activities from advanced towards low-wage 

countries. In an interesting contribution, Faber (2018) points out that advances in robotics will reduce 

production costs, no matter where the product is produced. That, he argues, will increase the 

attractiveness of producing domestically relative to offshoring. In effect, workers in export sectors of 

developing countries can be displaced by the adoption of robots, either onshore or offshore. Essentially, 

                                                                                                                                                                                                    
no decline in aggregate employment. In a cross-country analysis, Ghodsi et al. (2020) find that robot adoption does 
not significantly affect aggregate employment, although the impact varies at the industry level. 
5
 Clearly, some textile production can now also be nearly fully automated; an example is the Adidas ’Speed factory‘  

(Faber, 2018). Yet, relatively speaking, the share of tasks that robots can perform varies across industries. 
6 We thank an anonymous referee for pointing this out. 
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foreign robots act as a form of competition on the export market. Using a methodological approach 

similar to Acemoglu and Restrepo (2020), Faber (2018) finds that US robot adoption lowers labour 

demand in Mexican export-producing sectors.7 

These models inform the empirical analysis in our paper. The next sections describe the methodology 

and data to examine the aggregate (cross-country) implications of robotization. We view this analysis as 

a complementary approach to the within-country comparisons in Acemoglu and Restrepo (2020), Dauth 

et al. (2019), and Faber (2018). 

 

3. Methodology 

To examine the relation between robot adoption and changes in the structure of the workforce, we 

estimate regressions similar to those in Graetz and Michaels (2018) that take the form 

∆Lci = β ∆Robot adoptionci + 𝑿𝑐𝑖
′ γ + δc + εci,     (1) 

where ∆Lci is the change in the employment outcome of interest in industry i of country c.8 ∆Robot 

adoptionci is the change of the robot stock relative to labour input in each country-industry pair.9 Most 

specifications include control variables which are changes in: investment to value added ratios, and (the 

natural logarithm of) value added. We also examine results controlling for the adoption of information 

and communication technologies (discussed below). δc represents country fixed effects, which in a first-

difference equation are equivalent to country-specific time trends in a levels’ equation. Regressions are 

estimated in long-run changes between 2005 and 2015 because we are interested in longer-term trends. 

The regressions weight industries using their 2005 employment shares within each country. This ensures 

that estimates reflect the importance of industries within countries, but we give equal weight to 

countries in the analysis (as e.g. in Graetz and Michaels, 2018). We use heteroscedasticity-robust 

                                                             
7 If robots result in reshoring of a factory, this will affect all workers at the exporting plant in the developing 
country. Faber (2018) finds that Mexican workers in commuting zones most affected by U.S. robots are low-
educated machine operators and technicians in manufacturing and high-educated workers in managerial and 
professional occupations. Using the World Input-Output Tables, Krenz et al. (2018) find evidence for a positive 
relation between reshoring and the degree of automation. 
8
 The employment outcome of interest is either the average annual percentage growth rate in employment by 

country-industry pair, which is estimated as ((ln(EMPci,2015/EMPci,2005)) /10) * 100, or it is the change in the task-
specific employment share by country-industry pair, measured as the share in 2015 minus the share in 2005. 
9
 Robot adoption is defined as the number of robots installed per thousand persons employed. We follow Graetz 

and Michaels (2018) and use the percentile rank of the change in robot adoption as our main explanatory variable. 
This is further elaborated upon in Section 4.1. 
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standard errors that are two-way clustered by country and industry.10 This is a conservative approach 

because the resulting standard errors are typically larger compared to one-way clustering by country or 

industry. 

 

3.1 Endogeneity concerns and 2SLS estimation 

Estimating (1) using OLS raises several concerns about endogeneity. First, one might worry about 

reverse causality and omitted variable bias. For instance, industries that experience a faster growth in 

product demand may invest more in robots. Especially if the labour market is tight, a positive demand 

shock is more likely to result in investment in robots rather than an expansion of employment (Faber, 

2018).11 This is a case of reverse causality, because lower employment growth results in higher robot 

adoption. Also, relevant variables might be omitted from the regression analysis. For instance, Harrigan 

et al. (2016) find that adoption of new technologies is mediated by technically qualified workers. 

Second, one may worry about attenuation bias of β in (1) due to measurement error in the variable 

robot adoption. Clearly, the available data on robot adoption, discussed in Section 4.1, is imperfect, as it 

does not inform on the quality and other characteristics of robots installed. In addition, we estimate 

regression specifications in changes, which may worsen the signal-to-noise ratio compared to 

regressions of variables in levels. Due to measurement error, the variable robot adoption could be 

correlated with the error term εci and OLS estimation of β would be biased downwards. Finally, 

industries that adopt robots may differ from other industries in non-random ways, which would also 

bias the coefficient if not appropriately controlled for. Hence, the direction of bias in β is not clear a 

priori, although the previous literature suggests that a downward bias in OLS is more likely (e.g. Graetz 

and Michaels, 2018). 

 

                                                             
10

 We implement Stata’s ‘ivreg2’ command for OLS and 2SLS regressions. Two-way clustered standard errors are 
robust to arbitrary heteroscedasticity and intra-group correlation within each of the two (non-nested) categories 
“country” and “industry” (Cameron et al. 2012). This allows for robust inference, for example, if errors are 
correlated within countries (e.g. due to unobserved country-specific policies) and have separate correlation 
structures within industries (e.g. due to technology shocks). 
11

 In his analysis of the Mexican labour market, Faber (2018) points out that a positive demand shock due to the 
North American Free Trade Agreement may have put upward pressure on industries or local labour markets to 
adopt robots if they had less room to expand employment.  
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In an attempt to address these endogeneity concerns, we use two industry-specific instruments 

introduced by Graetz and Michaels (2018) and estimate (1) using 2SLS.12 The first instrument measures 

the share of each industry’s labour input that is replaceable by robots. This instrument is constructed 

using information on the tasks performed by robots (IFR, 2012). As discussed above, the extent of 

robotization for each task could be endogenous to industry conditions. Therefore, Graetz and Michaels 

(2018) use information on US occupations in each industry from the 1980 census, which dates back 

before the rise of robots. Occupations are defined as ‘replaceable’ if (part of) their tasks could have 

been replaced by robots in 2012. They then compute the fraction of hours worked in each industry in 

1980 that was performed by occupations that subsequently became more prone to replacement by 

robots. This instrument is not without limitations: it is based on data from the US and labour shares 

might therefore be different if constructed using data from other countries.13  

 The second instrument is motivated by rapid improvements in the ability of robotic arms to perform 

‘reaching and handling’ tasks. It measures the prevalence of occupations in each industry that require 

reaching and handling tasks compared to other physical demands in 1980, prior to robot adoption. 

Robotic arms are a salient characteristic of robots, and much technological advances are linked to the 

development of these robotic arms (Graetz and Michaels, 2018). It is therefore more likely that robotic 

arms are a technological characteristic of robots, less driven by the demand side (due to industries’ task 

requirements), which could reflect reverse causality. This instrument is constructed using the extent to 

which occupations in each US industry require reaching and handling tasks compared to other physical 

tasks in 1980.14 Similar limitations as to the first instrument apply here, but one may argue that this 

instrument is less likely to violate the exclusion restriction.  

 Clearly, neither instrument can guarantee to resolve all endogeneity concerns. Both instruments reflect 

variation across industries in the share of tasks that are potentially replaceable by robots, which may 

correlate with other changes over time. Nevertheless, the instruments are helpful to contrast OLS with 

2SLS results. 

  

                                                             
12

 The instruments are computed for 2-digit industries in the ISIC revision 3 classification, which matches with the 
industry information on robot stocks and occupational employment shares presented in Section 4.1. Note that the 
instruments do not vary across countries but only across industries. 
13

 Also note the replacement values are an upper bound because occupations are considered to be replaceable 
even if only part of their work can be replaced by robots. 
14 Information on the task content of occupations is taken from the Dictionary of Occupational Titles.  
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4. Data and descriptive analysis 

 We first describe the data on robots and occupations in Section 4.1. Descriptive statistics are presented 

in Section 4.2. 

 

4.1 Occupations and robots 

We combine two datasets with information on occupations and robot purchases. The first dataset with 

occupational employment by country-industry originates from Reijnders and de Vries (2018) and was 

updated by Buckley et al. (2020). The data is constructed using detailed survey and census data from 

statistical offices for the period from 2000 to 2015. The sources used in constructing this dataset closely 

align with those from other studies.15 The dataset provides employment for thirteen occupational 

groupings by country-industry pairs. It covers 40 countries, namely the 27 members of the European 

Union (per January 2007), Australia, Brazil, Canada, India, Indonesia, Japan, Mexico, the PRC, Russia, 

South Korea, Chinese Taipei, Turkey and the United States. For each of these countries, occupational 

employment shares by 35 ISIC revision 3.1 industries that cover the overall economy are distinguished. 

They include 14 two-digit manufacturing industries (such as textile manufacturing and electronics 

manufacturing), as well as agriculture, mining, construction, utilities, finance, business services, personal 

services, trade and transport services, and public services industries. The dataset thus has dimensions of 

13 occupational groupings x 35 industries x 40 countries x 16 years. Occupation data is intrinsically not 

exactly comparable across countries, and in practice will also vary due to differences in the type of 

sources and national data collection practices. Intertemporal changes within country-industries are 

likely more consistent because Reijnders and de Vries (2018) use data from the same national source for 

each country. Our empirical analysis exploits this within-country variation. 

 We examine the impact of robot adoption on tasks, which we distinguish into routine versus non-

routine and manual versus analytic tasks. Our measurement strategy is to infer the impact of robot 

adoption on tasks from data on the occupational structure of the workforce. The distinction between 

occupations with different task intensities is based on the so-called Routine Task Intensity (RTI) index 

developed by Autor et al. (2003) and mapped into the International Standard Classification of 

                                                             
15

 For example, for the U.S., the sources are the 2000 Census and the annual American Community Surveys. These 
sources are also used in Autor (2015). Data for European countries are from the harmonized individual level 
European Union Labour Force Surveys, which are also used in Goos et al. (2014). 
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Occupations (ISCO 88) by Goos et al. (2014). Table 1 provides the allocation of occupational groupings to 

tasks.  

 

Table 1: Mapping occupations to tasks  

 Routine Non-routine 

Manual Production workers (71-74, 81-

82, 93) 

Agricultural workers (61-62, 92) 

Others (01, 999) 

Support-services workers (51, 

910, 912-916) 

Drivers (83) 

Analytic Administrative workers (41-42) Legislators (11) 

Managers (12-13) 

Engineers (21, 31) 

Health professionals (22, 32) 

Teaching professionals (23, 33) 

Other professionals (24, 34) 

Sales workers (52, 911) 

Notes: Mapping of thirteen occupations from Reijnders and de Vries (2018) to four different groups based on 

Autor et al. (2003) and Goos et al. (2014). Numbers in brackets refer to International Standard Classification of 

Occupations codes (ISCO 88). 
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The second database includes deliveries of industrial robots by country-industry from the International 

Federation of Robotics (IFR).16 The IFR provides country data on the number of industrial robots 

delivered from 1993 onwards. Yet coverage varies and the breakdown of robot investment by country-

industry is only consistently available for most countries after 2004. In addition, robot investments 

increased rapidly during the 2000s. We therefore build the dataset using information for all available 

years but focus on the period from 2005 to 2015 in the empirical analysis.17 

We use the perpetual inventory method to build robot stocks, assuming a depreciation rate of 10 

percent as in Graetz and Michaels (2018).18 We then define ‘robot densification’ or simply ‘robot 

adoption’ as the robot stock per thousand persons employed. We examine changes in robot adoption 

over time. The distribution of changes in robot adoption for the country-industries included in our 

analysis has mostly either zero or small positive values, with a long right tail. Analysing raw changes in 

robot density is therefore not recommendable and we use the percentile of changes in robot adoption 

(based on the employment-weighted distribution of changes) as in Graetz and Michaels (2018).19  

We match the data on robot adoption with occupational employment.20 The nineteen sectors that are 

matched are 14 manufacturing industries, agriculture, mining, utilities, construction, and ‘education and 

R&D’. The (unweighted) average employment share of these sectors in the total economy across the 

sampled countries is 46 percent and 39 percent in 2000 and 2015, respectively. The share varies across 

levels of development. It is about a quarter of the workforce in advanced countries such as Denmark, 

                                                             
16 Purchases of services robots are only available for recent years and few countries, which limits studying the 
impact on task demand of robot adoption in services sectors. 
17 Program code to replicate the analysis is available from the authors upon request. 
18

 The perpetual inventory method to build robot stocks is: RSci,t = (1-d)*RSci,t-1 + RDci,t , where RS is the robot stock 
of industry i in country c at time t; RD are robot deliveries, and d is the depreciation rate. Our main results are 
robust to building the robot stock using a 5 and a 15 percent depreciation rate. 
19

 We follow Graetz and Michaels (2018) and calculate within-country employment-weighted distributions of 
changes in robot adoption between 2005 and 2015. We use the Stata code that Graetz and Michaels (2018) made 
available at https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/5JWBXU. Specifically, we 
denote robot adoption by RAci,t = RSci,t/EMPci,t, i.e. the robot stock per thousand persons employed in industry i of 
country c. We denote wsc the weighted change in robot adoption of country c, which is the summation of changes 
in robot adoption by industry i weighted by their employment shares. The change in robot adoption net of the 
weighted change in robot adoption is ΔRAci = (RAci,t - RAci,t-1) - wsc. We then calculate the percentile rank of the 
change in robot adoption (ΔRAci) and use this variable in the regression analysis. The use of percentiles is common 
in the economics literature and helpful when the data is skewed, see for example Autor et al. (2003). 
20

 After matching the datasets, we have data for 37 countries and 19 sectors, with missing data for a few country-
industry pairs. High-income countries include the ‘old’ EU15 countries, western offshoots, and high-income East 
Asian countries, namely Australia, Austria, Belgium, Canada, Germany, Denmark, Spain, Finland, France, the United 
Kingdom, Greece, Ireland, Italy, Japan, South Korea, Malta, the Netherlands, Portugal, Sweden, Chinese Taipei, and 
the United States. EMTEs are the others, namely Brazil, the PRC, Czech Republic, Estonia, Hungary, Indonesia, 
India, Lithuania, Latvia, Mexico, Poland, Romania, Russia, Slovakia, Slovenia, and Turkey. 
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the Netherlands, and the United States throughout the sample period. It is over 50 percent of total 

persons employed in industrializers such as the PRC, Turkey, and Poland. 

In most regression specifications, we control for changes in the investment to value added ratios, and 

(the natural logarithm of) value added.21 Although robots are a visible and much discussed form of 

automation, computers and other digital technologies impact jobs as well. Information and 

Communication Technologies (ICTs) have been found to be skill-biased, raising the productivity of high-

skilled workers and lowering demand for low-skilled workers (Feenstra 2008; Michaels et al. 2014). In 

contrast, robots are part of recent innovations and considered routine-biased, as they substitute for 

workers performing routine-manual tasks (Goos et al. 2014). These routine tasks are often performed by 

workers with a middling level of education, such as fabrication jobs involving repetitive production tasks 

(Autor, 2015). We therefore expect a direct effect of robot adoption on the demand for routine-manual 

task-intensive occupations independent of ICT investment.  

To control for ICT adoption, we use data from the EU KLEMS Release 2019 for gross fixed capital 

formation in computing and communication equipment (Stehrer et al. 2019). These ICT investments are 

expressed as a share in total investment. Changes in the ICT investment share are included in the 

analysis, also in the form of the percentile of changes in ICT adoption (based on the employment-

weighted distribution of changes).  

 

4.2. Descriptive analysis 

Table 2 shows descriptive statistics of our key dependent and explanatory variables. The top rows show 

changes in employment shares for occupations by task intensity. On average, the routine (manual) 

employment share declined by 4 percentage points between 2005 and 2015. This trend is observed in 

35 out of 37 countries, but the decline in the routine share differs across countries and industries. This 

can be seen in Appendix Figures 1 and 2, which depict the changes in employment shares for our four 

occupational groupings by country and industry, respectively. The decline in routine manual occupations 

is mirrored by the rise of non-routine analytic jobs, which increased by 4 percentage points on 

                                                             
21 This data is obtained from the WIOD 2016 release (Timmer et al. 2015). The first control variable, investment to 
value added ratios may be subject to concerns about multi-collinearity as robots are part of physical capital 
investment. We explored the share of robot investment in overall investment by using turnover-based prices of 
robots for the US provided in IFR (2012). The number of robot times their unit price gives a rough approximation of 
nominal investment. Our estimates suggest that the share of robot investment in total investment is small, 
typically not exceeding 1 percent. The first differences of our data for robot adoption and investment to value 
added ratios are only loosely correlated, with a correlation coefficient of -0.06. 
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average.22 The comparability of the shifts in routine manual and non-routine analytic occupations across 

our sample of high-income countries and EMTEs makes it likely that a common set of forces contributes 

to shared developments in labour markets. The prime suspect is automation (Autor, 2015). At the same 

time, variation in country-specific experiences underscores that no common cause will explain the full 

diversity of labour market developments across these economies.  

The average robot stock per thousand persons employed more than doubled from 2.23 in 2005 to 4.98 

in 2015. The standard deviation of robotization reveals substantial variation in robotization across 

countries and industries. Most of this variation stems from cross-industry differences within countries as 

opposed to variation between countries.23 More robots were installed in all countries, with the number 

of robots per thousand persons employed surging in Germany, Japan, and South Korea (see Appendix 

Figure 3).24 High robot density is observed in machinery, electronics, and automotive (see Appendix 

Figure 4). For industries that produce chemicals and metal products we also observe an increase in 

robot density, albeit starting from low levels.  

Appendix Figure 5 shows the number of robots per 1,000 persons employed by industry in the PRC and 

Germany for 2015. This figure helps clarify the lower level of robots per thousand persons employed in 

China. For example, in 2015, the number of robots installed in China’s automotive industry was about 

50,000, which compares to a slightly lower number of around 48,500 robots in that industry for 

Germany. Yet, in 2015 the number of persons employed in automotive is about 6.8 million in China 

compared to 965 thousand in Germany, so a factor 7 difference in the size of the workforce in that 

industry. Hence the number of robots installed per thousand persons employed is about 7 in China 

compared to 50 in Germany. 

Table 2 also provides descriptive statistics for the instruments and control variables. The instruments 

replaceable tasks and reaching and handling tasks are positively correlated, but different.25 For example, 

                                                             
22 Changes in the shares of routine analytic and non-routine manual jobs are typically smaller and we observe 
substantial variation across countries (see Appendix Figure 1). 
23 The standard deviation of the robot stock per thousand employed between countries is 8.06 in 2015. In 
comparison, the standard deviation of robot adoption within countries is 21.06 in 2015. Those are calculated, 
respectively, as the standard deviations of country means �̅�𝑐 and of their deviations 𝑥𝑐𝑖 −  �̅�𝑐 + �̿�, where x 
indicates robot adoption and �̿� is its global average. 
24

 For Japan, reported deliveries and stocks of robots changed over time due to a reclassification of machines as 
robots (Graetz and Michaels, 2018). In Section 5.2 we show that the main results are robust to dropping Japan 
from the sample. 
25 Note the instruments are measured by industry based on data for the US (see Section 4.1) and matched to the 
country-industry pairs.  
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the highest share of replaceable tasks is observed in automotive and metal manufacturing, whereas the 

extent of reaching and handlings tasks is highest in textile and food manufacturing. 

 

 

 

 

 

 

Table 2: Descriptive statistics 

 Obs. Mean SD p5 p95 

Dependent variables      

Employment growth (average annual, in %) 700 -0.78 3.41 -6.0 3.9 

Δ Routine employment share 700 -0.04 0.10 -0.2 0.1 

Δ Routine manual employment share 700 -0.04 0.12 -0.2 0.1 

Δ Routine analytic employment share 700 -0.00 0.05 -0.1 0.1 

Δ Non-routine manual employment share 700 -0.00 0.06 -0.1 0.1 

Δ Non-routine analytic employment share 700 0.04 0.10 -0.1 0.2 

Independent variables      

Percentile of changes in robot adoption 700 0.50 0.29 0.0 1.0 

Robot adoption, 2005 700 2.23 10.17 0.0 10.5 

Robot adoption, 2015 700 4.98 22.54 0.0 21.1 

Δ Investment to value added ratio 700 0.02 0.69 -0.2 0.2 

Δ (natural logarithm of) value added 700 0.21 0.60 -0.7 1.1 

Percentile of changes in information technology adoption 277 0.51 0.29 0.0 1.0 

Percentile of changes in communication technology adoption 277 0.50 0.30 0.0 1.0 

IV: Reaching and handling tasks 700 0.45 0.05 0.3 0.5 

IV: Replaceable tasks 700 0.25 0.12 0.0 0.4 

Notes: A ‘Δ’ in front of a variable refers to the change between 2005 and 2015. For variable descriptions, see Section 4.1. In the 
columns, ‘obs’ refers to the number of observations, SD the standard deviation, p5 the 5th percentile, and p95 the 95th 
percentile. 
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Figure 1 plots the change in the routine employment share against measures of increased robot use. In 

sub-figure (a), we plot the percentile of the change in robot density net of country trends on the 

horizontal axis, as well as the fitted regression line. The slope is negative and statistically significant. The 

distribution of data points around the fitted line suggest that the relationship between the routine share 

and the percentile of robot densification is well approximated by a linear functional form. In subfigure 

(b), we instead plot changes in robot density on the horizontal axis (again net of country trends), 

together with the fitted line. Here a linear functional form (though also negative and significant at 

conventional levels) seems much less adequate, and the estimated slope appears sensitive to several 

outlying observations near the top of the distribution of robot densification. Thus, following Graetz and 

Michaels (2018), in the regression analysis we will use the percentile of changes in robot densification. 

 

Figure 1: Robots and the routine employment share 

(a) Percentile of change in Robot density (b) Change in Robot density 

  
Notes: Observations are country-industry cells. The size of each circle corresponds to an industry’s 2005 within-country 
employment share. Vertical axis displays the change in the routine employment share between 2005 and 2015. Horizontal axis 
of panel (a) shows the percentile of changes in robot adoption (based on the employment-weighted distribution of changes), 
see Section 4.1. Panel (b) changes in robot adoption (based on the employment-weighted distribution of changes). Fitted 
regression lines are shown. Coefficients (standard errors) of the linear fit are respectively -0.00033 (0.00010) and -0.0013 
(0.0004). Sources: see Section 4.1. 
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Panel (a) of Figure 2 shows a descriptive relation between robot adoption and industry average changes 

in the routine employment share between 2005 and 2015. We observe a (slightly) stronger reduction in 

the routine share for industries that invested more in robots. Sectors such as paper and utilities 

experienced a decline in the share of routine jobs with only a relatively small increase in robotization. In 

manufacturing industries such as machinery, electronics, and automotive, we observe a decrease in the 

share of routine jobs. These industries are also among the ones with the strongest increase in robot 

adoption. Panels (b) and (c) suggest both instruments are good predictors, as industries with a higher 

share of replaceable tasks or those more intensive in reaching and handling tasks have installed more 

robots compared to others. The next section formally tests these relationships. 
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Figure 2: Cross-industry variation in IVs and changes in the routine employment share  

(a) Routine employment share 

 
(b) IV: Replaceable tasks 

 
(c) IV: Reaching and handling tasks 

 
Notes: On the horizontal axis is the (unweighted) average percentile of changes in robot adoption by industry. In panel (a), the 
vertical axis shows the industry (unweighted) average change in the routine employment share between 2005 and 2015. The 
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coefficient (standard error) of the linear fit in panel (a) is -0.013(0.007). The vertical axis of panels (b) and (c) show the values 
for the instruments, coefficients (standard errors) of the linear fit are respectively 0.59(0.11) and 0.20(0.07). Sources: see 
Section 4.1. 

 

5. Econometric results 

We present our main results from OLS and 2SLS regressions in Section 5.1. We find that robot adoption 

relates to a decline in the employment share of occupations with a high content of manual routine tasks. 

In Section 5.2 we present several extensions and robustness checks. We first document that results 

appear neither driven by specific sectors or countries nor spurious industry trends. We then exploit 

heterogeneity in task intensity across (blue-collar) production workers and find that robot adoption 

relates to declining demand for occupations that are more intensive in routine tasks. Finally, we explore 

whether global developments in robotization impact labour demand in EMTEs. 

 

5.1 Main OLS and 2SLS results 

Our main regression results are summarized in Table 3, with OLS results in panel A and 2SLS results in 

panel B. We start the analysis by regressing the average annual percentage growth of employment on 

robot adoption. Country fixed effects are included; thus, coefficients are identified from variation across 

industries. We use a conservative two-way clustering of standard errors at the country and industry 

level. Column 1 of Table 3 indicates that robot adoption is negatively correlated with the average growth 

rate of employment between 2005 and 2015. However, this relationship is not statistically different 

from zero. It suggests robot adoption is not labour replacing, which was also observed by Graetz and 

Michaels (2018). Our finding indicates this result holds in a larger country sample. 

In column (2) of Table 3, we examine the relation between robot adoption and the share of routine jobs. 

We find that increased robot use contributes to a decline in the routine employment share. To assess 

the economic magnitude, consider the difference between an industry with a median trend in robot 

adoption and an industry with no robot adoption, which equals 0.5 x -0.047 = -0.02 in the OLS 

regression. This difference amounts to about 59% of the average change in the routine employment 

share (which is -0.04, see Table 2). While this indicates a sizeable impact of robots on occupational 

shifts, the R-squared of 2% in column (2) where country fixed effects are partialled out, indicates that 

many other factors than robot adoption affect changes in the share of routine jobs. The coefficient more 

than doubles in the 2SLS regression, where we use the share of replaceable tasks in industries as an 

instrument (panel B, column 2). The instrument is positively and statistically significantly correlated with 
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robot adoption in the first stage, which is reported in column (4) of panel B. Identification is strong, with 

the Cragg-Donald Wald F statistic (268.53, assuming i.i.d. errors) and the Kleibergen-Paap F-statistic 

(23.42) surpassing the 10% critical value (16.38). Under-identification is rejected at the 5% level of 

statistical significance. The considerable increase in the estimated second stage coefficient for robot 

adoption, when compared to OLS results, may reflect measurement error in our main explanatory 

variable: an increase in the noise-to-signal ratio in robot adoption will bias OLS estimates towards zero. 

Moreover, the increase in the coefficient in 2SLS estimates may reflect that our instrument for robot 

adoption only varies across industries and that global industry trends impact changes in routine 

employment shares (see subsection 5.2 below). Using ‘reaching and handling’ tasks as an instrument 

gives similar results, although more prone to weak identification concerns (see Appendix Table 2). 
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Table 3: Baseline regression results of employment growth and change in routine employment share 

Notes: Robust standard errors in parentheses. Multi-way clustering by country and industry. The dependent variable 

employment growth in column (1) is the average annual percentage growth in employment for the period from 2005 to 2015. 

The dependent variable in columns (2)-(3) is the change in the routine employment share between 2005 and 2015. Column (4) 

reports the first stage for 2SLS estimation. The share of replaceable tasks in an industry is used as an instrument for robot 

adoption. Regressions include the change in the investment to value added ratio and the change in (the log of) value added 

between 2005 and 2015 as control variables. Country fixed effects are included in all regressions and partialled out in the 

reported R2. *** p<0.01, ** p<0.05, * p<0.1. 

  

Panel A: OLS     

 (1) (2) (3) (4) 
 Δ 

Employment  
Δ Routine 

employment 
share 

Δ Routine 
employment 

share 

Percentile of 
changes in 

robot 
adoption 

Percentile of changes in robot adoption -0.354 -0.047*** -0.055***  
 (0.73) (0.02) (0.02)  
Percentile of changes in robot adoption x 
dummy EMTE 

  0.040***  
  (0.02)  

R2 0.001 0.025 0.028  
Observations 700 700 700  
Number of countries 37 37 37 37 

Panel B: 2SLS (IV: Replaceable tasks)     

Percentile of changes in robot adoption -2.714 -0.120** -0.156**  
 (3.03) (0.05) (0.06)  
Percentile of changes in robot adoption x 
dummy EMTE 

  0.136**  
  (0.06)  

Replaceable tasks    0.892*** 
    (0.18) 

Cragg-Donald Wald F statistic    268.53 
Kleibergen-Paap F-statistic    23.42 
Kleibergen-Paap under identification test 
(p-value) 

   0.013 

R2 -0.052 -0.027 -0.053  
Observations 700 700 700 700 
Number of countries 37 37 37 37 
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An advantage of our dataset is the broad country coverage, including various emerging market and 

(post-) transition economies. In column (3) of Table 3, we differentiate the relation between robot 

adoption and routine shares across high-income countries and EMTEs.26 We do so by interacting a 

dummy variable for EMTEs with robot adoption.27 The relationship between robot adoption and 

declining routine shares appears to mainly occur in high-income countries: for both, the OLS and 2SLS 

regressions, the negative overall coefficient estimate for robot adoption in column (3) is almost equal in 

size to the positive interaction term with the EMTE dummy, indicating that the effect of robot adoption 

is essentially nullified in those countries.28 Since technical constraints to robots replacing tasks are more 

likely to bind for firms in high-wage advanced countries, improvements in robot capabilities might 

account for the larger employment response in advanced countries compared to EMTEs. 

 

Additionally, our dataset allows us to further disaggregate routine and non-routine employment shares 

into manual and analytic task-intensive occupations. Results are reported in Table 4, again with OLS 

results in panel A and 2SLS results in panel B.29 We find that the negative relation between robot 

adoption and routine employment shares is exclusively driven by manual routine jobs: the estimates in 

column (1) of Table 4 essentially mimic those of column (2) in Table 3, while no relationship can be 

found between robot adoption and analytic routine employment shares (Table 4, column 2). It thus 

appears robots are better suited to substitute for routine-manual tasks due to the ability of robots to 

manipulate objects. Conversely, the share of non-routine analytic occupations positively relates to robot 

adoption (column 4). This is consistent with the intuition that non-routine analytic tasks are 

complemented by robots in production (Autor, 2015). No relevant relationship is observed between 

robot adoption and changes in the manual non-routine employment share (column 3). 

  

                                                             
26 Given the number of robots installed in the PRC, it might be less appropriate to classify it as an EMTE. To check 
for robustness of reported results, we omitted China from the sample and re-classified it as a non-EMTE. This did 
not alter the results (available upon request). 
27 In the reported 2SLS regressions, we only instrument robot adoption but not the interaction. We additionally 
estimated 2SLS regressions with the interaction instrumented, which required interaction of our instrument with 
an EMTE dummy in the first stage. Results, which are available upon request, were quantitatively and qualitatively 
similar to those reported, but more prone to weak identification concerns. 
28

 OLS and 2SLS estimates of β are not statistically significantly different from zero when estimating equation (1) 
for EMTEs only. Results are available upon request. 
29 Note that first stage results for the 2SLS case are the same as in Table 3. 
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Table 4: Robot adoption and changes in employment shares by task type 

Panel A: OLS     

 (1) (2) (3) (4) 
 Δ Routine 

manual 
employment 

share 

Δ Routine 
analytic 

employment 
share 

Δ Non-
routine 
manual 

employment 
share 

Δ Non-
routine 
analytic 

employment 
share 

Percentile of changes in robot adoption -0.049*** 0.002 -0.008 0.055*** 
 (0.02) (0.00) (0.01) (0.02) 
Δ Investment to value added ratio 0.003*** 0.001 -0.001 -0.003*** 
 (0.00) (0.00) (0.00) (0.00) 
Δ (natural logarithm of) value added 0.005 0.002 0.004 -0.009 
 (0.01) (0.00) (0.00) (0.01) 

R2 0.024 0.003 0.007 0.031 
Observations 700 700 700 700 
Number of countries 37 37 37 37 

Panel B: 2SLS (IV: Replaceable tasks)     

Percentile of changes in robot adoption -0.119** -0.003 -0.032 0.152*** 
 (0.05) (0.01) (0.02) (0.05) 
Δ Investment to value added ratio 0.004*** 0.001 -0.001 -0.004*** 
 (0.00) (0.00) (0.00) (0.00) 
Δ (natural logarithm of) value added 0.012 0.003 0.006 -0.019** 
 (0.01) (0.00) (0.01) (0.01) 

R2 -0.020 0.001 -0.021 -0.059 
Observations 700 700 700 700 
Number of countries 37 37 37 37 
Notes: Robust standard errors in parentheses. Multi-way clustering by country and industry. The dependent variable is the 

change in the respective employment share between 2005 and 2015. The share of replaceable tasks in an industry is used as an 

instrument for robot adoption. Country fixed effects are included in all regressions and partialled out in the reported R2. *** 

p<0.01, ** p<0.05, * p<0.1. 
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5.2 Robustness and extensions 

We performed several robustness checks. These are summarized in subsection 5.2.1. The other 

subsections focus on aspects considered relevant to better understand the relation between 

robotization and routine employment shares and to motivate future research in this area. Subsection 

5.2.2 examines the relation between robot adoption across production occupations that differ in task 

intensity. Subsection 5.2.3 examines whether the results are driven by longer-term industry trends. 

Finally, subsection 5.2.4 explores the role of global industry trends in robot adoption for driving country-

industry changes in employment shares. 

 

5.2.1 Robustness and heterogeneity 

We first examine regression results when adding ICT investment to the analysis. This is because 

computers seem particularly suited to substitute for analytic tasks and the development of computer 

and communication equipment is not independent of robot adoption, such that omitting ICT may bias 

the coefficient for robot adoption. Including variables for computer and communication investment 

leads to a considerable decline in the sample to 277 observations because the EU KLEMS dataset does 

not report ICT investment by industry for many EMTEs. The estimated coefficient for the relation 

between robot adoption and routine employment shares is smaller but remains negative and 

statistically significant in the OLS and IV regressions (see column 1 of Appendix Table 3).30 

To avoid results being driven by certain countries, we inspect the pattern of OLS residuals (depicted in 

Appendix Figure 6). Furthermore, we look at the distribution of country-specific parameter estimates, 

which we obtain by interacting robot adoption with a matrix of country dummy variables in our main 

OLS specification (see Appendix Figure 7). There is a cluster of high fitted values for Ireland (Appendix 

Figure 6, panel A) and two residuals from Romania and Sweden obtain a relatively high leverage and are 

potential outliers (Appendix Figure 6, panel B). Moreover, the country-specific estimation coefficients in 

Appendix Figure 7 suggest coefficient estimates for Ireland, Lithuania, and Latvia deviate from other 

countries. We hence exclude these 5 countries as well as Portugal, which saw somewhat different 

employment dynamics than the rest of our sample, according to our descriptive analysis (cf. Appendix 

                                                             
30

 Moreover, the change in the parameter estimate appears to originate from a sample composition effect and not 
from omitted ICT variables: re-estimating the baseline model with the 277 observations for which ICT data is 
available produces the same coefficient for robot adoption as in the presence of ICT variables: -0.033***. 
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Figure 1). Results are reported in column (2) of Appendix Table 3. Dropping these countries does not 

qualitatively affect our main result.31 

Similarly, we also compute industry-specific coefficients for the relationship between robot adoption 

and the share of routine jobs. Appendix Figure 8 suggests that the electricity, gas, and water supply 

sector could be an outlier that potentially drives the overall result, together with the education and R&D 

sector, which saw different routine employment trends according to our descriptive analysis. We thus 

re-estimate our baseline regressions and sequentially omit these sectors. Columns (3) and (4) of 

Appendix Table 3 suggest our results are not driven by these sectors, although omitting the education 

and R&D sector in 2SLS estimation pushes statistical significance of the robot adoption parameter 

slightly beyond the critical 10% level (for the null hypothesis of no relationship). To check whether 

countries that account for the majority of robots installed are driving our estimates, we also excluded 

Japan, South Korea, Germany, the PRC and the US from our estimates, leaving the baseline estimate for 

robotization unaffected. For the same rationale, we also excluded the high robot-adopting automotive 

and electronic industries (columns (5) and (6) of Appendix Table 3 respectively). All parameter estimates 

for robot adoption where negative and statistically different from 0 and t-tests do not allow rejecting 

the null hypothesis of equality of these parameter estimates with the baseline result (at the 10 percent 

level of statistical significance). 

We also investigated whether a sample split at the median (0.5) of the percentile change in robot 

adoption affects our results. The results indicate that the parameter estimate for the slower adopters 

(<0.5) are considerably higher but estimated with low precision, so that they are not statistically 

different from 0. Neither of the estimated OLS or IV parameters for the sample split are statistically 

speaking different from those in the baseline result of column (2) in table 3, in line with an 

approximately linear relationship suggested by panel (a) in Figure 1.32 

 

5.2.2 Robot adoption and production workers 

                                                             
31

 We also excluded several of those countries/country groups separately, with equally robust results. This also 
applies to excluding Japan from the analysis, which was dropped from the sample by Graetz and Michaels (2018). 
32 We also examined results when clustering standard errors at the country level and not clustering at all. The 
alternative treatment of standard errors does not affect the statistical significance of the relation between robot 
adoption and the share of routine jobs in the OLS regressions and the coefficient (β) is different from zero at the 
1% level of statistical significance in the 2SLS regressions. 
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In Table 1, production workers are categorized as having a high content of routine-manual tasks. Yet, 

production workers are typically labelled blue-collar workers. Hence, the relation between robots and a 

declining employment share of routine manual jobs could reflect a substitution of robots for blue collar 

production workers, instead of a substitution for routine tasks.   

 It is hard to rule out such an alternative interpretation. Yet, for 24 countries in our sample we are able 

to distinguish seven 2-digit ISCO occupations that together comprise the occupational grouping labelled 

‘production workers’ (cf. Table 1).33 The routine task-intensity for each of these 2-digit occupations is 

provided by Autor et al. (2003) and, using an alternative approach, by Marcolin et al. (2019). We use 

these to create a weighted average of the change in the employment share of production workers. The 

weights we use are the routine intensity index (RII) from Marcolin et al. (2019) and the routine task 

intensity (RTI) gauged by Autor et al. (2003). The task-intensity by occupation is reported in Appendix 

Table 4. Clearly, the seven occupations labelled production workers are heterogeneous in the content of 

routine tasks.  

The first column of Table 5 regresses the change in the employment share of production workers on 

robot adoption. Results indicate a significant negative relation between robot adoption and changes in 

the share of (routine manual task-intensive) production jobs. Subsequent columns examine the same 

relation, but here changes in the share of production jobs are calculated as a routine task-intensity 

weighted average change. Occupations that have a higher content of routine tasks receive a greater 

weight in this approach.34 

Weighting by routine intensity strengthens the negative association between robotization and changes 

in the share of production jobs: the resulting parameter estimates in columns (2)-(5) are larger 

compared to column (1). This result is observed if we use as weights the global average routine intensity 

(RII) reported by Marcolin et al. (2019), see column (2), or the RII for the US or Germany (columns (3) 

and (4), respectively). It is also observed if we weight occupations using the RTI from Autor et al. (2003), 

see column (5), although the parameter is estimated with less statistical precision in the OLS and 2SLS 

regressions. Overall, these results provide additional evidence that robot adoption is related to a decline 

in the share of occupations that have a higher content of routine tasks. 

                                                             
33 The seven ISCO 2-digit occupations that can be distinguished are ISCO 88 codes 71, 72, 73, 74, 81, 82, and 93. 
The countries for which we are able to make this split are Austria, Belgium, Czech Republic, Denmark, Estonia, 
Finland, France, Germany, Greece, Hungary, Ireland, Italy, Lithuania, Latvia, Malta, the Netherlands, Poland, 
Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Turkey, and the United Kingdom. 
34

 The task-intensity measures are Pearson-transformed, i.e. centred at 0 with a standard deviation of 1. We added +1 to the 
measure. Hence, an occupation with mean routine intensity gets a weight of 1, a below-average routine intensity occupation a 
lower weight, and an above-average routine intensity occupation a weight above 1 (see Appendix Table 4). 
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Table 5: Robot adoption and changes in the employment share of production workers 

Panel A: OLS      

 (1) (2) (3) (4) (5) 
 No weight RII weight 

(global 
average) 

RII weight 
(U.S.) 

RII weight 
(Germany) 

RTI weight 

Percentile of changes in 
robot adoption 

-0.031* -0.066*** -0.065*** -0.058*** -0.103 
(0.02) (0.02) (0.02) (0.02) (0.08) 

R2 0.016 0.036 0.054 0.035 0.019 
Observations 450 450 450 450 450 

Panel B: 2SLS (IV: Replaceable tasks) 

Percentile of changes in 
robot adoption 

-0.083* -0.122** -0.143*** -0.113** -0.318* 
(0.04) (0.06) (0.05) (0.06) (0.19) 

R2 -0.018 0.013 -0.021 0.006 -0.033 
Observations 450 450 450 450 450 
Notes: Robust standard errors in parentheses. Multi-way clustering by country and industry. Dependent variable is the change 

in the employment share of production workers between 2005 and 2015, with weights indicated in the column header. In Panel 

B, the share of replaceable tasks in an industry is used as an instrument for robot adoption. Country fixed effects are included in 

all regressions and partialled out in the reported R2. *** p<0.01, ** p<0.05, * p<0.1. 

 

5.2.3 Controlling for long-term industry trends 

A remaining concern is that there could be a long-run decline in the share of routine tasks done by 

workers, which is more pronounced in industries investing more in robots yet not driven by robotization 

per se. A common way to examine this concern is to regress employment outcomes from a pre-period 

on the period during which robots were adopted.   

Ideally, we thus relate pre-period employment outcomes on the current rise of robots. However, we are 

constrained by cross-country occupations data which are available from 2000 onwards. By 2000, robots 

were already being installed (Graetz and Michaels, 2018). Still, descriptive statistics in Table 2 for the 

number of robots per thousand persons employed in 2005 and 2015 suggest they became ubiquitous 

from the mid-2000s onwards.   

In column (1) of Table 6 we therefore regress the change in the routine employment share between 

2000 and 2005 on our post-2005 measure of robot adoption. We indeed find a relationship, although 

the coefficient is smaller and less precisely estimated compared to our baseline results (cf. column (2) of 

                  



32 
 

Table 3).35 Pre-trend correlation is a necessary condition for unobserved sector heterogeneity, but it is 

not a sufficient condition to render identification invalid. This is partly because the pre-trend does not 

pre-date the rise of robots. Yet, to control for longer-term industry trends, we provide two additional 

estimation approaches: explicitly accounting for pre-trends by including the change in the routine 

employment share between 2000 and 2005 as a lagged dependent variable and including industry fixed 

effects. 

 

Table 6: Accounting for long-term industry trends 

Panel A: OLS      

 (1) (2) (3) (4) (5) 
 Δ Routine 

employment 
share 

2000-2005 

Δ Routine 
employment 

share 

Δ Routine 
manual 

employment 
share 

Δ Routine 
employment 

share 

Δ Routine 
manual 

employment 
share 

Percentile of changes in 
robot adoption 

-0.020** -0.044*** -0.046*** -0.016*** -0.026*** 

(0.01) (0.01) (0.01) (0.00) (0.01) 
Change in dependent 
variable, 2000-2005 

 0.174* 0.147*   

 (0.10) (0.08)   

Industry Fixed Effects No No No Yes Yes 
R2 0.014 0.035 0.030 0.007 0.007 
Observations 700 700 700 700 700 

Panel B: 2SLS (IV: Replaceable tasks)     

Percentile of changes in 
robot adoption 

-0.053** -0.113** -0.114**   
(0.02) (0.05) (0.05)   

Change in dependent 
variable, 2000-2005 

 0.133 0.109   

 (0.09) (0.08)   

Industry Fixed Effects No No No   
R2 -0.018 -0.012 -0.010   
Observations 700 700 700   
Notes: Robust standard errors in parentheses. Multi-way clustering by country and industry. The dependent variable is the 

change in the respective employment share over the respective period. The share of replaceable tasks in an industry is used as 

an instrument for robot adoption. Regressions include the change in the investment to value added ratio and the change in (the 

log of) value added between 2005 and 2015 as control variables. Country fixed effects are included in all regressions and 

partialled out in the reported R2. *** p<0.01, ** p<0.05, * p<0.1. 

 

                                                             
35 Note that the pre-trends in employment share changes cover a 5 year period. Estimated coefficients and 
standard errors thus have to be approximately multiplied by a factor 2 to make them comparable with our main 
results for the 10 year period from 2005 to 2015. When the pre-trends are included as lagged dependent variables 
(columns 2 and 3 of table 6), they accordingly have to be divided by 2. 
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Columns (2) and (3) of Table 6 add pre-trends to the regressions on changes in the routine employment 

share and the routine manual employment share, respectively (cf. column (2) of Table 3 and column (1) 

of Table 4). We observe a positive autocorrelation in employment dynamics. Yet, robot adoption adds 

additional information beyond those pre-trends as the coefficient remains statistically significant. The 

estimated coefficient is comparable to the baseline results. Perhaps the most convincing evidence that 

the negative relationship between routine employment shares and robot adoption is not exclusively 

driven by spurious industry dynamics can be found in columns (4) and (5) of Table 6, where we add 

industry fixed effects to our OLS regressions.36 This is a restrictive model that assumes industry-specific 

time trends in levels and thus not only accounts for heterogeneous industry employment trends but also 

removes a considerable degree of variation in the data that may be relevant for identification. Yet, the 

negative association between robotization and routine employment trends is still observed and 

statistically significant. 

 

5.2.4 Global developments in robot adoption 

As discussed in Section 2, advances in the technical ability of robots might relate to the “reshoring” of 

jobs to advanced countries. For example, Faber (2018) observes a decrease in labour demand in Mexico 

associated with robot adoption in the United States. We explore this relation in a cross-country context 

using two measures of robot adoption that vary across industries but not across countries. First, we take 

global averages, defined as the cross-country mean of the percentile change in robot adoption by 

industry. This reflects the idea that in an interconnected world those industries with higher robot 

adoption will see faster declines in routine employment shares regardless of the location of production. 

Second, we use robot adoption of U.S. industries to represent global industry trends.  

Results are reported in Table 7. In columns (1) and (2) the global averages of industry-specific robot 

adoption is used. The regressions suggest a statistically significant and negative relation between 

changes in the routine employment share and global trends in robot adoption.37 Interestingly, the 

positive interaction between robot adoption and EMTEs shown in column (2) no longer makes up for the 

negative overall robot adoption parameter: the hypothesis that the sum of both parameters adds up to 

                                                             
36

 We cannot estimate the model with industry fixed effects using 2SLS because the instrument only varies across 
industries. 
37

 Using measures of robot adoption that vary across industries but not across countries, we also do not find a 
statistical significant association between robot adoption and the average annual percentage growth in 
employment in specifications with and without the interaction with a dummy for EMTEs.  
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0 can be rejected at the 5% level of statistical significance. This suggests that global developments in 

robot adoption impact labour markets in EMTEs. Note, however, this is not observed if we use robot 

adoption in U.S. industries to characterize global trends (see column (4)).38 Nevertheless, these 

exploratory regressions provide suggestive evidence for the potential relevance of global production 

networks and associated job reshoring patterns due to automation, which remains an interesting area 

for further research. 

 

Table 7: Global industry trends in robot adoption 

Panel A: OLS     

 (1) (2) (3) (4) 
Robot measure: Global average Global average U.S. U.S. 

 Δ Routine 
employment 

share 

Δ Routine 
employment 

share 

Δ Routine 
employment 

share 

Δ Routine 
employment 

share 

Alternative measure robot 
adoption 

-0.084*** -0.101*** -0.045*** -0.052*** 

(0.03) (0.04) (0.01) (0.02) 
Alternative measure robot 
adoption x dummy EMTE 

 0.054***  0.052*** 

 (0.02)  (0.02) 

R2 0.034 0.039 0.039 0.043 
Observations 700 700 700 700 

Panel B: 2SLS (IV: Replaceable tasks)    

Alternative measure robot 
adoption 

-0.128*** -0.152*** -0.067*** -0.080*** 

(0.05) (0.06) (0.02) (0.03) 
Alternative measure robot 
adoption x dummy EMTE 

 0.089**  0.086** 

 (0.04)  (0.03) 

R2 0.026 0.030 0.030 0.033 
Observations 700 700 700 700 
Notes: Robust standard errors in parentheses. Multi-way clustering by country and industry. The dependent variable is the 

change in the routine employment share between 2005 and 2015. Column headers indicate which type of global measure has 

been used to calculate industry-specific robot adoption. The share of replaceable tasks in an industry is used as an instrument 

for robot adoption. Regressions include the change in the investment to value added ratio and the change in (the log of) value 

added between 2005 and 2015 as control variables. Country fixed effects are included in all regressions and partialled out in the 

reported R2. *** p<0.01, ** p<0.05, * p<0.1. 

  

                                                             
38 It is also not observed if we use robot adoption in German industries to characterize global trends. 
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6. Concluding remarks 

We study the relation between industrial robots and occupational shifts by task content. Using a panel 

of 19 industries in 37 high-income and EMTEs from 2005-2015, we find that increased use of robots is 

associated with positive changes in the employment share of non-routine analytic jobs and negative 

changes in the share of routine manual jobs. The patterns that we document are robust to instrumental 

variable estimation and the inclusion of various control variables, but they differ across levels of 

economic development: we observe a significant relation for high-income countries, but not in EMTEs. 

Finally, we do not find a significant relation between industrial robot adoption and aggregate 

employment growth. This suggests that industrial robots did not replace jobs, but they did impact task 

demand and thus had disruptive effects on employment. 

Our analysis covered industrial robots, but much of the recent robotic developments have been taking 

place in services, such as the emergence of medical robots, logistics handling robots, and delivery by 

means of drones. It is therefore likely that robots will continue to disrupt labour markets and result in 

reallocation dynamics. Studying and understanding the socio-economic consequences of these 

disruptions will be important (see e.g. Dauth et al. 2019). Retraining and reskilling of workers seems 

inevitable, which should spur a major rethinking about educational goals, lifelong learning, and 

developing the right skills (Kim and Park, 2020). 
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Appendix Tables and Figures 

 

Appendix Figure 1: Changes in employment shares by country and task type between 2005 and 2015 

 

Notes: change in employment shares between 2005 and 2015. For aggregation, industries included in the sample are weighted 

using their 2005 employment share within the sample for each country. Agriculture is omitted in the calculation for Ireland, 

which reports a sudden swing in the routine manual employment share (see subsection 5.2.1 for robustness check excluding 

Ireland). Source: updated occupations database from Reijnders and de Vries (2018) by Buckley et al. (2020). 
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Appendix Figure 2: Changes in employment shares by industry and task type between 2005 and 2015 

 

Notes: change in employment shares by industry between 2005 and 2015. Unweighted average changes. Source: updated 

occupations database from Reijnders and de Vries (2018) by Buckley et al. (2020). 
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Appendix Figure 3: Robotization by country in 2005 and 2015 

 

Notes: robot stock per thousand employees by country in 2005 (squares) and 2015 (triangles). Sources: robot stock from IFR 

and employment from Reijnders and de Vries (2018) updated by Buckley et al. (2020). 
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Appendix Figure 4: Robotization by industry in 2005 and 2015 

 

Notes: robot stock per thousand persons employed by industry in 2005 (squares) and 2015 (triangles). Sources: robot stock 

from IFR and employment from Reijnders and de Vries (2018) updated by Buckley et al. (2020). 
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Appendix Figure 5: Robotization by industry in the PRC and Germany, 2015 

 

Notes: robot stock per thousand persons employed by industry. Sources: robot stock from IFR and employment from Reijnders 

and de Vries (2018) updated by Buckley et al. (2020). 
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Appendix Figure 6: Residual patterns for main OLS specification 

a) Residuals vs. fitted values 

 

b) Leverage vs. residuals 

 
Notes: Panel a plots the OLS residuals (deviation of predicted from actual value, vertical axis) against the fitted values from the 

OLS model (horizontal axis). Panel b plots the leverage (influence) every observation gets in the OLS regression, a measure of 

distance from the mean in the explanatory variables (vertical axis), against normalized squared residuals (horizontal axis). All 

values are based on column (2) in panel A of Table 3. 
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Appendix Figure 7: Country-specific OLS coefficients 

a) Overall distribution 

 

b) Country-specific coefficient plot 

 
Notes: Figure 6 displays country-specific coefficients for an OLS regression model where we augment the specification in 

column (2) of Table 3 (panel A) with an interaction of robot adoption with country dummy variables. The distribution of those 

country-specific interactions with robot adoption is depicted in Figure 6(a) using a histogram and a kernel density estimator. 

Figure 6(b) displays the estimated coefficients by country, including their 95% confidence interval. 
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Appendix Figure 8: Industry-specific OLS coefficients 

 

Notes: Figure displays industry-specific coefficients for a regression model where we augment the specification in column (2) of 

Table 3 (panel A) with an interaction of robot adoption with industry dummy variables. The estimated coefficients by industry 

are depicted together with their 95% confidence interval. 
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Appendix Table 1: Industry codes 

ISIC rev 
3.1 code 

Short description Long description 

AtB Agriculture Agriculture, hunting, forestry and fishing 

15t16 Food products Food, beverages and tobacco 

17t18 Textiles Textiles and textile 

19 Leather Leather, leather and footwear 

20 Wood products Wood and products of wood and cork 

21t22 Paper Pulp, paper, printing and publishing 

23 Petroleum Coke, refined petroleum and nuclear fuel 

24 Chemical Chemicals and chemical 

25 Plastic Rubber and plastics 

26 Non-metallic mineral Other non-metallic mineral 

27t28 Metal Basic metals and fabricated metal 

29 Machinery Machinery, not elsewhere classified (n.e.c.) 

30t33 Electronics Electrical and optical equipment 

34t35 Automotive Transport equipment 

36t37 Other  Manufacturing n.e.c.; recycling 

C Mining Mining and quarrying 

E Utilities Electricity, gas and water supply 

F Construction Construction 

M Education, and R&D Education, and R&D 
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Appendix Table 2: 2SLS results for reaching and handling 

 (1) (2) (3) (4) 
 Δ Employment  Δ Routine 

employment 
share 

Δ Routine 
employment 

share 

Percentile of 
changes in 

robot adoption 

Percentile of changes in robot 
adoption 

-1.586 -0.134* -0.169  

 (3.81) (0.08) (0.11)  
Percentile of changes in robot 
adoption x dummy EMTE 

  0.149  
  (0.10)  

Reaching and handling tasks    1.438*** 
    (0.43) 

Cragg-Donald Wald F statistic    129.47 
Kleibergen-Paap F-statistic    11.44 
Kleibergen-Paap under 
identification test (p-value) 

   0.025 

R2 -0.013 -0.047 -0.075  
Observations 700 700 700 700 
Number of countries 37 37 37 37 
Notes: Robust standard errors in parentheses. Multi-way clustering by country and industry. The dependent variable 

employment growth in column (1) is the average annual growth in employment for the period from 2005 to 2015. The 

dependent variable in columns (2)-(3) is the change in the routine employment share between 2005 and 2015. Column (4) 

reports the first stage for 2SLS estimation. Reaching and handling tasks are used as an instrument for robot adoption. 

Regressions include the change in the investment to value added ratio and the change in (the log of) value added between 2005 

and 2015 as control variables. Country fixed effects are included in all regressions and partialled out in the reported R
2
. *** 

p<0.01, ** p<0.05, * p<0.1. 
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Appendix Table 3: Robustness analysis 

Panel A: OLS 

 (1) (2) (3) (4) (5) (6) (7) (8) 
 ICT 

investment 
included 

6 countries 
omitted 

Sector 
‘utilities’ 
omitted 

Sector 
‘education 
and R&D’ 
omitted 

Excluding 
several major 

robot-
adopting 
countries  

Excluding 
several high-

adopting 
industries 

Percentile of 
changes in 

robot 
adoption <0.5 

Percentile of 
changes in 

robot 
adoption >0.5 

Perc. of Δ robot 
adoption 

-0.033** -0.039*** -0.052*** -0.040** -0.047*** -0.038** -0.158 -0.066* 
(0.01) (0.01) (0.01) (0.02) (0.02) (0.02) (0.10) (0.04) 

Perc. of Δ IT 
adoption 

0.024        
(0.03)        

Perc. of Δ CT 
adoption 

-0.009        
(0.03)        

R2 0.044 0.044 0.032 0.019 0.021 0.012 0.011 0.029 
Observations 277 588 663 663 605 626 349 351 

Panel B: 2SLS (IV: Replaceable tasks) 

Perc. of Δ robot 
adoption 

-0.085** -0.109*** -0.134*** -0.106 -0.130** -0.135** -1.367 -0.060 
(0.04) (0.04) (0.05) (0.07) (0.05) (0.06) (0.84) (0.21) 

Perc. of Δ IT 
adoption 

0.035*        
(0.02)        

Perc. of Δ CT 
adoption 

-0.021        
(0.03)        

R2 -0.015 -0.065 -0.038 -0.022 -0.032 -0.052 -0.448 0.029 
Observations 277 588 663 663 605 626 349 351 
Notes: See subsection 5.2.1. Regressions for the percentile of changes in robot adoption (Perc. of Δ robot adoption) on changes in the routine employment share between 2005 

and 2015. Robust standard errors in parentheses. Multi-way clustering by country and industry. In column (1) the percentile of changes in information technology adoption 

(Perc. of Δ IT adoption) and the percentile of changes in communication technology adoption (Perc. of Δ CT adoption) are included as explanatory variables. Panel B uses the 

share of replaceable tasks in an industry as an instrument for robot adoption. Regressions include the change in the investment to value added ratio and the change in (the log 

of) value added between 2005 and 2015 as control variables. Country fixed effects are included in all regressions and partialled out in the reported R2. *** p<0.01, ** p<0.05, * 

p<0.1.
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Appendix Table 4: Routine task-intensity of occupations grouped as ‘production workers’ 

ISCO88 

code 

Description occupation RII (Global 
average) 

RII (U.S.) RII 
(Germany) 

RTI 

71 Extraction and building trades workers 1.031 1.209 0.955 0.815 

72 Metal, machinery and related trade work 1.269 1.209 0.955 1.457 

73 Precision, handicraft, craft printing and 
related trade workers 

0.952 1.598 0.477 2.589 

74 Other craft and related trade workers 0.810 0.626 0.477 2.238 

81 Stationary plant and related operators 2.930 2.181 3.342 1.323 

82 Machine operators and assemblers 2.480 3.541 2.865 1.493 

93 Labourers in mining, construction, 
manufacturing and transport 

2.886 2.375 3.342 1.449 

Notes: The routine intensity index (RII) is from Marcolin et al. (2019) and the routine task intensity (RTI) from Autor et al. 

(2003). The measures are Pearson-transformed, i.e. centred at 0 with a standard deviation of 1. We added +1 to the measure. 

Hence, an occupation with mean routine intensity gets a weight of 1, a below-average routine intensity occupation a lower 

weight, and an above-average routine intensity occupation a weight above 1. 

 

 

                  


