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JEL classification: This paper examines the impact of industrial robots on jobs. We combine data on robot adoption and occupations
E23 by industry in thirty-seven countries for the period from 2005 to 2015. We exploit differences across industries
J23 in technical feasibility — defined as the industry’s share of tasks replaceable by robots - to identify the impact of
030 robot usage on employment. The data allow us to differentiate effects by the routine-intensity of employment.
Keywords: We find that a rise in robot adoption relates significantly to a fall in the employment share of routine manual
Robots task-intensive jobs. This relation is observed in high-income countries, but not in emerging market and transition
Tasks economies.
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1. Introduction

Rapid improvements in robot capabilities have fuelled concerns
about the implications of robot adoption for jobs. While the creation
of autonomous robots with flexible 3D movement continues to be a ma-
jor challenge to engineers, rapid progress is being made. Robots can
now perform a variety of tasks, such as sealing, assembling, and han-
dling tools. As robot capabilities continue to expand and unit prices fall,
firms are intensifying investment in robots (Frey and Osborne, 2017;
Graetz and Michaels, 2018; Acemoglu and Restrepo, 2020). What is the
impact of robot adoption on labour demand? Do robots substitute for
tasks previously performed by workers?

The main contribution of this paper is to empirically study the im-
pact of industrial robots on the occupational structure of the workforce
across industries in a set of high-income as well as Emerging Market and
Transition Economies (EMTEs). We combine a large and detailed occu-
pations database with data on industrial robot deliveries from the Inter-
national Federation of Robotics. The database on occupational employ-
ment from Reijnders and de Vries (2018) allows us to examine the share
of employment in occupations with a high content of routine tasks —i.e.
tasks that can be performed by following a well-defined set of proce-
dures. We delineate occupations along two dimensions of the character-
istics of tasks performed, namely ‘analytic’ versus ‘manual’, and ‘routine’
versus ‘non-routine’.! We thus distinguish four key occupational group-

* Corresponding author.
E-mail address: g.j.de.vries@rug.nl (G.J. de Vries).
1 The distinction between manual and analytic occupations is based on differ-
ences in the extent of mental versus physical activity.
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ings, namely routine manual, routine analytic, non-routine manual, and
non-routine analytic task-intensive occupations (as in Autor et al. 2003;
Reijnders and de Vries 2018; Cortes et al. 2020). We follow Graetz and
Michaels (2018) in constructing measures of robot adoption by country-
industry pairs and relate these to changes in occupational employment
shares. Our sample covers 19 industries for 37 countries at varying lev-
els of development from 2005 to 2015, and includes major users of in-
dustrial robots, such as the Peoples Republic of China (PRC), Japan,
South Korea, Germany, and the United States. Our main finding is that
country-industry pairs that saw a more rapid increase in robot adop-
tion experienced larger reductions in the employment share of routine
manual jobs.

Our approach is motivated by the following economic considera-
tions. Firms produce a variety of products using a continuum of tasks
(Acemoglu and Autor, 2011), and these products differ in the number
of tasks that can be performed by robots (Graetz and Michaels, 2018).
For example, the share of replaceable tasks by robots differs between
apparel and automotive and appears larger in the latter.? This gives rise
to differences across industries in the technical feasibility of robots substi-
tuting tasks previously performed by humans. Advances in machine ca-
pabilities expand the set of tasks carried out by machines (Acemoglu and
Restrepo, 2018). Firms will adopt robots if it is technically feasible and
the profit gains exceed the costs of purchasing and installing robots.
Given higher wages in advanced countries, the technical constraints to

2 See e.g. the Economist, 24 August 2017, “Sewing clothes still needs human
hands. But for how much longer?”
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robots replacing tasks are more likely to bind for firms in these coun-
tries. Hence, improvements in robot capabilities would result in a larger
employment response in advanced countries compared to developing
countries.

We use these economic insights in our analysis. In particular, the
technical feasibility of adopting robots guides our instrumental variables
(IV) strategy to identify the causal relation between robots and labour
demand. Economic feasibility motivates our distinction of the impact
of robot adoption between advanced and developing countries. Using
two-stage least squares (2SLS) estimation, we find that robot adoption
lowers the employment share of routine manual occupations. This rela-
tion is observed in high-income countries, but not in emerging market
and transition economies.

This paper relates to recent studies that examine the impact of robot
adoption on socio-economic outcomes. Graetz and Michaels (2018) find
that robot adoption contributed to an increase in productivity growth
across industries in high-income countries between 1993 and 2007.
Their findings suggest that robot adoption did not reduce employ-
ment, which is corroborated in this paper. This is also observed by
Dauth et al. (2019), but not by Acemoglu and Restrepo (2020), who ex-
amine geographic variation in robot adoption across the United States
and find that robots are labour replacing. Dauth et al. (2019) use de-
tailed linked employer-employee data for Germany to show that dis-
placement effects are cancelled out by reallocation effects, such that in
the aggregate no employment effects from robot adoption are observed.
Data availability did not allow Graetz and Michaels (2018) to exam-
ine the impact of robots on workers that perform different tasks. Yet,
Autor (2015) emphasizes that workers with routine task-intensive occu-
pations are most likely to be affected by automation. This paper aims to
contribute to our understanding of the impact of robots on such occu-
pational shifts.

The remainder of this paper is organized as follows. Section 2 re-
views the key theoretical mechanisms between automation and labour
demand. Section 3 describes the methodology and instrumental vari-
ables. Section 4 documents patterns in the occupational structure of the
workforce and robot adoption. Section 5 empirically studies the impact
of robot adoption on the task content of labour demand. Section 6 con-
cludes.

2. Theoretical framework

This section starts with a discussion of robot adoption in the context
of a traditional capital-labour model. In this model, technology is factor-
augmenting: it increases the efficiency of one of the production factors
employed (Acemoglu and Autor, 2011). The model puts the focus on
the complementarity and substitutability between robots and tasks per-
formed by workers. We then describe recent modelling efforts that em-
phasize the ability of machines to replace workers in a widening range
of tasks (Acemoglu and Restrepo, 2018). These models help to clarify
mechanisms by which robots may impact labour demand and motivate
our empirical analysis.

The models we describe analyse the impact of automation. Automa-
tion refers to computer-assisted machines, robotics, and artificial intel-
ligence (Acemoglu and Restrepo, 2018). Thus, robots are a subset of
automation. Robots are driven by algorithms, which have become in-
creasingly complex. They can now operate without requiring anyone to
explicitly program the mechanisms of the tasks performed. Yet, not all
algorithms drive a physical machine. In fact, many algorithms are em-
bodied in devices or applications. Once these algorithms are designed,
they can be used for many tasks anywhere and at any time. For robots,
the algorithms are embodied in the machines. Expanding the range of
tasks performed by robots thus requires investing in robots, i.e. robots
are rival (Martens and Tolan, 2018). This contrasts to algorithms, which
are non-rival in nature. Robots are more frequently studied in empiri-
cal work because of the availability of statistics on their use. However,
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given the properties of robotics, studies that use robot data capture only
part of the impact of automation on labour.

In the traditional model, automation enhances the productiv-
ity of workers by complementing the tasks they perform (see e.g.
Autor et al. 1998; Feenstra, 2008; Van Reenen 2011). Yet, for work-
ers who perform tasks that can be substituted by automation, increas-
ing availability of machines will lower their labour demand. Scholars
have argued that new technologies tend to substitute for occupations
that are intensive in routine tasks, such as assemblers, and complement
non-routine task-intensive occupations, such as managers and techni-
cal scientists (Autor et al. 2003; Van Reenen 2011; Goos et al. 2014;
Dauth et al. 2019). This is because for routine tasks, such as monitoring,
measuring, controlling, and calculating, there are well-specified proce-
dures which allow the task to be automated. Yet, knowing the rules
that govern task procedures is not a trivial requirement. For many non-
routine tasks, such as those requiring creativity and problem-solving
skills, automation is difficult and rather complements the performance
of these tasks done by humans. In line with this reasoning, an analysis
for Western European countries by Goos et al. (2014) finds that recent
technological progress has been replacing workers doing routine tasks.
This is referred to as “routine-biased technological change” (RBTC).®

Predictions in the traditional model are straightforward. Firms adopt
robots if it is economically feasible to do so, which is the case when prof-
its exceed purchasing and installation costs. Therefore, substitution of
robots for routine tasks is more likely in countries with higher wage lev-
els, and there a fall in the fixed costs or the rental price will result in an
increase in robot adoption (Graetz and Michaels, 2018).

Recent modelling efforts by Acemoglu and Restrepo (2018) add a
distinctive feature of automation: the technical ability of machines to
replace workers in a widening range of tasks. They split the production
process into tasks done by workers and machines. Advances in machine
capabilities expand the set of tasks carried out by machines and replace
labour, thus lowering labour demand.

However, robotic automation technologies also result in the creation
of new tasks that cannot be done by machines, such as programming,
design, and maintenance of high-tech equipment (Acemoglu and Re-
strepo, 2019). This ‘re-instatement effect’ increases labour demand. The
combination of tasks displaced by robots and the re-instatement of new
tasks determine the reallocation of tasks between workers and machines.

Complementarity between man and machine in the Acemoglu and
Restrepo (2018) model originates from two indirect effects that come
on top of complementarity effects in the traditional model (Martens and
Tolan, 2018). The first is a price-productivity effect whereby robot
adoption lowers prices of produced goods, leading the industry to ex-
pand sales and increase its demand for labour. The second is a scale-
productivity effect whereby lower aggregate goods’ prices enable the
(local) economy to expand and thus also increase labour demand. The
overall impact of robotization on labour demand then depends on
whether the displacement or the complementary effects dominate. So
far, empirical evidence on the aggregate employment effects from robo-
tization are inconclusive.*

In line with Acemoglu and Restrepo (2018), Graetz and
Michaels (2018) model the production process as a continuum of
tasks. Yet, Graetz and Michaels (2018) assume that products differ

3 Autor et al. (2003) examine the impact of computerization on labour de-
mand in U.S. industries from 1960-1998. They find a positive relation between
the demand for non-routine tasks and computerizing industries. Ross (2017) and
De La Rica et al. (2020) study the impact of RBTC on the wage premium for job
tasks.

4 Acemoglu and Restrepo (2020) find that robot adoption lowers labour de-
mand in US local labour markets. Dauth et al. (2019) argue in an analy-
sis for Germany that workers displaced by robots reallocate to services and
there is no decline in aggregate employment. In a cross-country analysis,
Ghodsi et al. (2020) find that robot adoption does not significantly affect ag-
gregate employment, although the impact varies at the industry level.
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in the share of tasks that can be carried out by machines. Garments
provide a clear example: sewing garments is a complex process that
requires human intuition and dexterity, which is difficult to program.
In contrast, it has proven easier to program robots to perform tasks
in automobile assembly lines.> Automation of car assembly lines has
helped to reduce error rates and enhances the control of repeatable
tasks. The technical feasibility of machines taking over tasks thus differs
by industry.

In this expanded model, the improvement of machine capabilities
may drive automation.® That is, if robot adoption is constrained by
the production nature of certain industries, the rental price of robots
does not matter. Rather, it is an expansion in machine capabilities that
will drive automation. Given that labour costs are higher in advanced
economies, the relaxing of technological constraints by expanding robot
capabilities will lead to higher economic incentives for robotization in
advanced countries and hence stronger employment responses.

The traditional and expanded model capture the key economic mech-
anisms driving robot adoption and their employment effects. The PRC is
an interesting case to illustrate how additional factors drive robot adop-
tion. Wage levels in China are below high-income countries, but it is
the world’s largest adopter of industrial robots (Cheng et al. 2019). This
seems counterintuitive to the modelling of robot adoption. Yet, robot use
in China does coincide with rising wages and a slowdown in the growth
of its working-age population. Besides labour costs, concerns over prod-
uct quality and production expansion are found to influence decisions
by firms in adopting robots (Cheng et al. 2019). In addition, the Chi-
nese government has initiated various programs and provides subsidies
that encourage the development of the robotics industry (Yang, 2017;
Lin, 2018).

Robots may also reverse the trend to relocate fabrication activities
from advanced towards low-wage countries. In an interesting contri-
bution, Faber (2018) points out that advances in robotics will reduce
production costs, no matter where the product is produced. That, he ar-
gues, will increase the attractiveness of producing domestically relative
to offshoring. In effect, workers in export sectors of developing countries
can be displaced by the adoption of robots, either onshore or offshore.
Essentially, foreign robots act as a form of competition on the export
market. Using a methodological approach similar to Acemoglu and Re-
strepo (2020), Faber (2018) finds that US robot adoption lowers labour
demand in Mexican export-producing sectors.”

These models inform the empirical analysis in our paper. The next
sections describe the methodology and data to examine the aggre-
gate (cross-country) implications of robotization. We view this analy-
sis as a complementary approach to the within-country comparisons in
Acemoglu and Restrepo (2020), Dauth et al. (2019), and Faber (2018).

3. Methodology

To examine the relation between robot adoption and changes in the
structure of the workforce, we estimate regressions similar to those in
Graetz and Michaels (2018) that take the form

AL ;= BARobot adoptionci + X/;y + 8, + &, [€))

5 Clearly, some textile production can now also be nearly fully automated; an
example is the Adidas "Speed factory‘ (Faber, 2018). Yet, relatively speaking,
the share of tasks that robots can perform varies across industries.

6 We thank an anonymous referee for pointing this out.

7 If robots result in reshoring of a factory, this will affect all workers at the
exporting plant in the developing country. Faber (2018) finds that Mexican
workers in commuting zones most affected by U.S. robots are low-educated ma-
chine operators and technicians in manufacturing and high-educated workers in
managerial and professional occupations. Using the World Input-Output Tables,
Krenz et al. (2018) find evidence for a positive relation between reshoring and
the degree of automation.
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where AL; is the change in the employment outcome of interest in in-
dustry i of country c.® ARobot adoption,; is the change of the robot
stock relative to labour input in each country-industry pair.® Most spec-
ifications include control variables which are changes in: investment to
value added ratios, and (the natural logarithm of) value added. We also
examine results controlling for the adoption of information and com-
munication technologies (discussed below). 5. represents country fixed
effects, which in a first-difference equation are equivalent to country-
specific time trends in a levels’ equation. Regressions are estimated in
long-run changes between 2005 and 2015 because we are interested in
longer-term trends. The regressions weight industries using their 2005
employment shares within each country. This ensures that estimates re-
flect the importance of industries within countries, but we give equal
weight to countries in the analysis (as e.g. in Graetz and Michaels, 2018).
We use heteroscedasticity-robust standard errors that are two-way clus-
tered by country and industry.'? This is a conservative approach because
the resulting standard errors are typically larger compared to one-way
clustering by country or industry.

3.1. Endogeneity concerns and 2SLS estimation

Estimating (1) using OLS raises several concerns about endogeneity.
First, one might worry about reverse causality and omitted variable bias.
For instance, industries that experience a faster growth in product de-
mand may invest more in robots. Especially if the labour market is tight,
a positive demand shock is more likely to result in investment in robots
rather than an expansion of employment (Faber, 2018).1! This is a case
of reverse causality, because lower employment growth results in higher
robot adoption. Also, relevant variables might be omitted from the re-
gression analysis. For instance, Harrigan et al. (2016) find that adoption
of new technologies is mediated by technically qualified workers. Sec-
ond, one may worry about attenuation bias of # in (1) due to measure-
ment error in the variable robot adoption. Clearly, the available data
on robot adoption, discussed in Section 4.1, is imperfect, as it does not
inform on the quality and other characteristics of robots installed. In
addition, we estimate regression specifications in changes, which may
worsen the signal-to-noise ratio compared to regressions of variables in
levels. Due to measurement error, the variable robot adoption could be
correlated with the error term &; and OLS estimation of # would be bi-
ased downwards. Finally, industries that adopt robots may differ from
other industries in non-random ways, which would also bias the coeffi-
cient if not appropriately controlled for. Hence, the direction of bias in
p is not clear a priori, although the previous literature suggests that a
downward bias in OLS is more likely (e.g. Graetz and Michaels, 2018).

In an attempt to address these endogeneity concerns, we
use two industry-specific instruments introduced by Graetz and

8 The employment outcome of interest is either the average annual percent-
age growth rate in employment by country-industry pair, which is estimated as
((An(EMP; 515/EMP; 5005)) /10) * 100, or it is the change in the task-specific
employment share by country-industry pair, measured as the share in 2015 mi-
nus the share in 2005.

9 Robot adoption is defined as the number of robots installed per thousand
persons employed. We follow Graetz and Michaels (2018) and use the percentile
rank of the change in robot adoption as our main explanatory variable. This is
further elaborated upon in Section 4.1.

10 We implement Stata’s ‘ivreg2’ command for OLS and 2SLS regressions. Two-
way clustered standard errors are robust to arbitrary heteroscedasticity and
intra-group correlation within each of the two (non-nested) categories “coun-
try” and “industry” (Cameron et al. 2012). This allows for robust inference,
for example, if errors are correlated within countries (e.g. due to unobserved
country-specific policies) and have separate correlation structures within indus-
tries (e.g. due to technology shocks).

11 In his analysis of the Mexican labour market, Faber (2018) points out that a
positive demand shock due to the North American Free Trade Agreement may
have put upward pressure on industries or local labour markets to adopt robots
if they had less room to expand employment.
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Michaels (2018) and estimate (1) using 2SLS.!? The first instrument
measures the share of each industry’s labour input that is replaceable
by robots. This instrument is constructed using information on the tasks
performed by robots (IFR, 2012). As discussed above, the extent of robo-
tization for each task could be endogenous to industry conditions. There-
fore, Graetz and Michaels (2018) use information on US occupations in
each industry from the 1980 census, which dates back before the rise of
robots. Occupations are defined as ‘replaceable’ if (part of) their tasks
could have been replaced by robots in 2012. They then compute the
fraction of hours worked in each industry in 1980 that was performed
by occupations that subsequently became more prone to replacement
by robots. This instrument is not without limitations: it is based on data
from the US and labour shares might therefore be different if constructed
using data from other countries.'®

The second instrument is motivated by rapid improvements in the
ability of robotic arms to perform ‘reaching and handling’ tasks. It mea-
sures the prevalence of occupations in each industry that require reach-
ing and handling tasks compared to other physical demands in 1980, prior
to robot adoption. Robotic arms are a salient characteristic of robots,
and much technological advances are linked to the development of these
robotic arms (Graetz and Michaels, 2018). It is therefore more likely that
robotic arms are a technological characteristic of robots, less driven by
the demand side (due to industries’ task requirements), which could re-
flect reverse causality. This instrument is constructed using the extent
to which occupations in each US industry require reaching and handling
tasks compared to other physical tasks in 1980.'# Similar limitations as
to the first instrument apply here, but one may argue that this instru-
ment is less likely to violate the exclusion restriction.

Clearly, neither instrument can guarantee to resolve all endogene-
ity concerns. Both instruments reflect variation across industries in the
share of tasks that are potentially replaceable by robots, which may cor-
relate with other changes over time. Nevertheless, the instruments are
helpful to contrast OLS with 2SLS results.

4. Data and descriptive analysis

We first describe the data on robots and occupations in Section 4.1.
Descriptive statistics are presented in Section 4.2.

4.1. Occupations and robots

We combine two datasets with information on occupations and robot
purchases. The first dataset with occupational employment by country-
industry originates from Reijnders and de Vries (2018) and was updated
by Buckley et al. (2020). The data is constructed using detailed survey
and census data from statistical offices for the period from 2000 to 2015.
The sources used in constructing this dataset closely align with those
from other studies.'® The dataset provides employment for thirteen oc-
cupational groupings by country-industry pairs. It covers 40 countries,
namely the 27 members of the European Union (per January 2007), Aus-
tralia, Brazil, Canada, India, Indonesia, Japan, Mexico, the PRC, Russia,
South Korea, Chinese Taipei, Turkey and the United States. For each

12 The instruments are computed for 2-digit industries in the ISIC revision 3
classification, which matches with the industry information on robot stocks and
occupational employment shares presented in Section 4.1. Note that the instru-
ments do not vary across countries but only across industries.

13 Also note the replacement values are an upper bound because occupations
are considered to be replaceable even if only part of their work can be replaced
by robots.

14 Information on the task content of occupations is taken from the Dictionary
of Occupational Titles.

15 For example, for the U.S., the sources are the 2000 Census and the annual
American Community Surveys. These sources are also used in Autor (2015).
Data for European countries are from the harmonized individual level European
Union Labour Force Surveys, which are also used in Goos et al. (2014).
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of these countries, occupational employment shares by 35 ISIC revision
3.1 industries that cover the overall economy are distinguished. They
include 14 two-digit manufacturing industries (such as textile manu-
facturing and electronics manufacturing), as well as agriculture, min-
ing, construction, utilities, finance, business services, personal services,
trade and transport services, and public services industries. The dataset
thus has dimensions of 13 occupational groupings x 35 industries x 40
countries X 16 years. Occupation data is intrinsically not exactly compa-
rable across countries, and in practice will also vary due to differences
in the type of sources and national data collection practices. Intertempo-
ral changes within country-industries are likely more consistent because
Reijnders and de Vries (2018) use data from the same national source
for each country. Our empirical analysis exploits this within-country
variation.

We examine the impact of robot adoption on tasks, which we dis-
tinguish into routine versus non-routine and manual versus analytic
tasks. Our measurement strategy is to infer the impact of robot adop-
tion on tasks from data on the occupational structure of the workforce.
The distinction between occupations with different task intensities is
based on the so-called Routine Task Intensity (RTI) index developed by
Autor et al. (2003) and mapped into the International Standard Classifi-
cation of Occupations (ISCO 88) by Goos et al. (2014). Table 1 provides
the allocation of occupational groupings to tasks.

The second database includes deliveries of industrial robots by
country-industry from the International Federation of Robotics (IFR).!®
The IFR provides country data on the number of industrial robots de-
livered from 1993 onwards. Yet coverage varies and the breakdown
of robot investment by country-industry is only consistently available
for most countries after 2004. In addition, robot investments increased
rapidly during the 2000s. We therefore build the dataset using informa-
tion for all available years but focus on the period from 2005 to 2015
in the empirical analysis.'”

We use the perpetual inventory method to build robot stocks, assum-
ing a depreciation rate of 10% as in Graetz and Michaels (2018).1® We
then define ‘robot densification’ or simply ‘robot adoption’ as the robot
stock per thousand persons employed. We examine changes in robot
adoption over time. The distribution of changes in robot adoption for
the country-industries included in our analysis has mostly either zero or
small positive values, with a long right tail. Analysing raw changes in
robot density is therefore not recommendable and we use the percentile
of changes in robot adoption (based on the employment-weighted dis-
tribution of changes) as in Graetz and Michaels (2018).'°

16 Purchases of services robots are only available for recent years and few coun-
tries, which limits studying the impact on task demand of robot adoption in
services sectors.

17 Program code to replicate the analysis is available from the authors upon
request.

18 The perpetual inventory method to build robot stocks is: RS, = (1-
d)*RS.; + RD,, , where RS is the robot stock of industry i in country c at
time t; RD are robot deliveries, and d is the depreciation rate. Our main results
are robust to building the robot stock using a 5 and a 15 percent depreciation
rate.

19 We follow Graetz and Michaels (2018) and calculate within-
country employment-weighted distributions of changes in robot
adoption between 2005 and 2015. We wuse the Stata code
that Graetz and Michaels (2018) made available at https://
dataverse.harvard.edu/dataset.xhtml?persistentld=doi:10.7910/DVN/5JWBXU.
Specifically, we denote robot adoption by RA;; = RS /EMP 4, i.e. the robot
stock per thousand persons employed in industry i of country c. We denote ws,
the weighted change in robot adoption of country ¢, which is the summation of
changes in robot adoption by industry i weighted by their employment shares.
The change in robot adoption net of the weighted change in robot adoption
is ARA; = (RA;, - RA;;1) - ws.. We then calculate the percentile rank of
the change in robot adoption (ARA,) and use this variable in the regression
analysis. The use of percentiles is common in the economics literature and
helpful when the data is skewed, see for example Autor et al. (2003).
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Non-routine

Table 1
Mapping occupations to tasks.
Routine
Manual Production workers (71-74, 81-82, 93) Agricultural
workers (61-62, 92) Others (01, 999)
Analytic Administrative workers (41-42)

Support-services workers (51, 910, 912-916) Drivers (83)

Legislators (11) Managers (12-13) Engineers (21, 31) Health professionals
(22, 32) Teaching professionals (23, 33) Other professionals (24, 34) Sales
workers (52, 911)

Notes: Mapping of thirteen occupations from Reijnders and de Vries (2018) to four different groups based on Autor et al. (2003) and Goos et al. (2014). Numbers
in brackets refer to International Standard Classification of Occupations codes (ISCO 88).

Table 2
Descriptive statistics.
Obs. Mean  SD p5 p95
Dependent variables
Employment growth (average annual, in %) 700 -0.78  3.41 -6.0 39

A Routine employment share

A Routine manual employment share

A Routine analytic employment share

A Non-routine manual employment share
A Non-routine analytic employment share
Independent variables

Percentile of changes in robot adoption
Robot adoption, 2005

Robot adoption, 2015

A Investment to value added ratio

A (natural logarithm of) value added

700 -0.04 0.10 -02 0.1
700 -0.04 0.12 -02 01
700 -0.00  0.05 -0.1 0.1
700 -0.00 0.06 -0.1 0.1
700 0.04 0.10 -0.1 0.2

700 0.50 0.29 0.0 1.0
700 2.23 10.17 0.0 10.5
700 4.98 2254 0.0 211
700 0.02 0.69 -02 02
700 0.21 0.60 -0.7 1.1

Percentile of changes in information technology adoption 277 0.51 0.29 0.0 1.0
Percentile of changes in communication technology adoption 277 0.50 0.30 0.0 1.0

IV: Reaching and handling tasks
IV: Replaceable tasks

700 0.45 0.05 0.3 0.5
700 0.25 0.12 0.0 0.4

Notes: A ‘A’ in front of a variable refers to the change between 2005 and 2015. For variable descriptions,
see Section 4.1. In the columns, ‘obs’ refers to the number of observations, SD the standard deviation, p5

the 5th percentile, and p95 the 95th percentile.

We match the data on robot adoption with occupational employ-
ment.”? The nineteen sectors that are matched are 14 manufacturing in-
dustries, agriculture, mining, utilities, construction, and ‘education and
R&D’. The (unweighted) average employment share of these sectors in
the total economy across the sampled countries is 46% and 39% in 2000
and 2015, respectively. The share varies across levels of development.
It is about a quarter of the workforce in advanced countries such as
Denmark, the Netherlands, and the United States throughout the sam-
ple period. It is over 50% of total persons employed in industrializers
such as the PRC, Turkey, and Poland.

In most regression specifications, we control for changes in the in-
vestment to value added ratios, and (the natural logarithm of) value
added.?! Although robots are a visible and much discussed form of

20 After matching the datasets, we have data for 37 countries and 19 sec-
tors, with missing data for a few country-industry pairs. High-income coun-
tries include the ‘old’ EU15 countries, western offshoots, and high-income East
Asian countries, namely Australia, Austria, Belgium, Canada, Germany, Den-
mark, Spain, Finland, France, the United Kingdom, Greece, Ireland, Italy, Japan,
South Korea, Malta, the Netherlands, Portugal, Sweden, Chinese Taipei, and the
United States. EMTEs are the others, namely Brazil, the PRC, Czech Republic,
Estonia, Hungary, Indonesia, India, Lithuania, Latvia, Mexico, Poland, Romania,
Russia, Slovakia, Slovenia, and Turkey.

21 This data is obtained from the WIOD 2016 release (Timmer et al. 2015).
The first control variable, investment to value added ratios may be subject to
concerns about multi-collinearity as robots are part of physical capital invest-
ment. We explored the share of robot investment in overall investment by using
turnover-based prices of robots for the US provided in IFR (2012). The number
of robot times their unit price gives a rough approximation of nominal invest-
ment. Our estimates suggest that the share of robot investment in total invest-
ment is small, typically not exceeding 1 percent. The first differences of our
data for robot adoption and investment to value added ratios are only loosely
correlated, with a correlation coefficient of -0.06.

automation, computers and other digital technologies impact jobs as
well. Information and Communication Technologies (ICTs) have been
found to be skill-biased, raising the productivity of high-skilled work-
ers and lowering demand for low-skilled workers (Feenstra 2008;
Michaels et al. 2014). In contrast, robots are part of recent innovations
and considered routine-biased, as they substitute for workers performing
routine-manual tasks (Goos et al. 2014). These routine tasks are often
performed by workers with a middling level of education, such as fab-
rication jobs involving repetitive production tasks (Autor, 2015). We
therefore expect a direct effect of robot adoption on the demand for
routine-manual task-intensive occupations independent of ICT invest-
ment.

To control for ICT adoption, we use data from the EU KLEMS Release
2019 for gross fixed capital formation in computing and communication
equipment (Stehrer et al. 2019). These ICT investments are expressed as
a share in total investment. Changes in the ICT investment share are in-
cluded in the analysis, also in the form of the percentile of changes in ICT
adoption (based on the employment-weighted distribution of changes).

4.2. Descriptive analysis

Table 2 shows descriptive statistics of our key dependent and ex-
planatory variables. The top rows show changes in employment shares
for occupations by task intensity. On average, the routine (manual)
employment share declined by 4 percentage points between 2005 and
2015. This trend is observed in 35 out of 37 countries, but the decline
in the routine share differs across countries and industries. This can be
seen in Appendix Figs. 1 and 2, which depict the changes in employment
shares for our four occupational groupings by country and industry, re-
spectively. The decline in routine manual occupations is mirrored by
the rise of non-routine analytic jobs, which increased by 4 percentage
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Fig. 1. Robots and the routine employment share.
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Notes: Observations are country-industry cells. The size of each circle corresponds to an industry’s 2005 within-country employment share. Vertical axis displays
the change in the routine employment share between 2005 and 2015. Horizontal axis of panel (a) shows the percentile of changes in robot adoption (based on the
employment-weighted distribution of changes), see Section 4.1. Panel (b) changes in robot adoption (based on the employment-weighted distribution of changes).
Fitted regression lines are shown. Coefficients (standard errors) of the linear fit are respectively -0.00033 (0.00010) and -0.0013 (0.0004). Sources: see Section 4.1.

points on average.’? The comparability of the shifts in routine manual
and non-routine analytic occupations across our sample of high-income
countries and EMTEs makes it likely that a common set of forces con-
tributes to shared developments in labour markets. The prime suspect
is automation (Autor, 2015). At the same time, variation in country-
specific experiences underscores that no common cause will explain the
full diversity of labour market developments across these economies.

The average robot stock per thousand persons employed more than
doubled from 2.23 in 2005 to 4.98 in 2015. The standard deviation of
robotization reveals substantial variation in robotization across coun-
tries and industries. Most of this variation stems from cross-industry dif-
ferences within countries as opposed to variation between countries.?>
More robots were installed in all countries, with the number of robots
per thousand persons employed surging in Germany, Japan, and South
Korea (see Appendix Fig. A3).>* High robot density is observed in ma-
chinery, electronics, and automotive (see Appendix Fig. A4). For indus-
tries that produce chemicals and metal products we also observe an in-
crease in robot density, albeit starting from low levels.

Appendix Fig. A5 shows the number of robots per 1,000 persons
employed by industry in the PRC and Germany for 2015. This figure
helps clarify the lower level of robots per thousand persons employed in
China. For example, in 2015, the number of robots installed in China’s
automotive industry was about 50,000, which compares to a slightly
lower number of around 48,500 robots in that industry for Germany.
Yet, in 2015 the number of persons employed in automotive is about
6.8 million in China compared to 965 thousand in Germany, so a fac-
tor 7 difference in the size of the workforce in that industry. Hence the

22 Changes in the shares of routine analytic and non-routine manual jobs are
typically smaller and we observe substantial variation across countries (see Ap-
pendix Fig. A1).

23 The standard deviation of the robot stock per thousand employed between
countries is 8.06 in 2015. In comparison, the standard deviation of robot adop-
tion within countries is 21.06 in 2015. Those are calculated, respectively, as
the standard deviations of country means x, and of their deviations x,; — X, + X,
where x indicates robot adoption and Xisits global average.

24 For Japan, reported deliveries and stocks of robots changed over time due
to a reclassification of machines as robots (Graetz and Michaels, 2018). In
Section 5.2 we show that the main results are robust to dropping Japan from
the sample.

number of robots installed per thousand persons employed is about 7 in
China compared to 50 in Germany.

Table 2 also provides descriptive statistics for the instruments and
control variables. The instruments replaceable tasks and reaching and han-
dling tasks are positively correlated, but different.”> For example, the
highest share of replaceable tasks is observed in automotive and metal
manufacturing, whereas the extent of reaching and handlings tasks is
highest in textile and food manufacturing.

Fig. 1 plots the change in the routine employment share against mea-
sures of increased robot use. In sub-figure (a), we plot the percentile of
the change in robot density net of country trends on the horizontal axis,
as well as the fitted regression line. The slope is negative and statistically
significant. The distribution of data points around the fitted line suggest
that the relationship between the routine share and the percentile of
robot densification is well approximated by a linear functional form. In
subfigure (b), we instead plot changes in robot density on the horizontal
axis (again net of country trends), together with the fitted line. Here a
linear functional form (though also negative and significant at conven-
tional levels) seems much less adequate, and the estimated slope appears
sensitive to several outlying observations near the top of the distribu-
tion of robot densification. Thus, following Graetz and Michaels (2018),
in the regression analysis we will use the percentile of changes in robot
densification.

Panel (a) of Fig. 2 shows a descriptive relation between robot adop-
tion and industry average changes in the routine employment share be-
tween 2005 and 2015 (see Table Al for the industry descriptions). We
observe a (slightly) stronger reduction in the routine share for industries
that invested more in robots. Sectors such as paper and utilities experi-
enced a decline in the share of routine jobs with only a relatively small
increase in robotization. In manufacturing industries such as machinery,
electronics, and automotive, we observe a decrease in the share of rou-
tine jobs. These industries are also among the ones with the strongest
increase in robot adoption. Panels (b) and (c) suggest both instruments
are good predictors, as industries with a higher share of replaceable
tasks or those more intensive in reaching and handling tasks have in-

25 Note the instruments are measured by industry based on data for the US (see
Section 4.1) and matched to the country-industry pairs.
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share.

Notes: On the horizontal axis is the (unweighted) average percentile of changes
in robot adoption by industry. In panel (a), the vertical axis shows the indus-
try (unweighted) average change in the routine employment share between
2005 and 2015. The coefficient (standard error) of the linear fit in panel (a)
is -0.013(0.007). The vertical axis of panels (b) and (c) show the values for
the instruments, coefficients (standard errors) of the linear fit are respectively
0.59(0.11) and 0.20(0.07). Sources: see Section 4.1.
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stalled more robots compared to others. The next section formally tests
these relationships.

5. Econometric results

We present our main results from OLS and 2SLS regressions in
Section 5.1. We find that robot adoption relates to a decline in the
employment share of occupations with a high content of manual rou-
tine tasks. In Section 5.2 we present several extensions and robustness
checks. We first document that results appear neither driven by specific
sectors or countries nor spurious industry trends. We then exploit het-
erogeneity in task intensity across (blue-collar) production workers and
find that robot adoption relates to declining demand for occupations
that are more intensive in routine tasks. Finally, we explore whether
global developments in robotization impact labour demand in EMTEs.

5.1. Main OLS and 2SLS results

Our main regression results are summarized in Table 3, with OLS
results in panel A and 2SLS results in panel B. We start the analysis
by regressing the average annual percentage growth of employment on
robot adoption. Country fixed effects are included; thus, coefficients are
identified from variation across industries. We use a conservative two-
way clustering of standard errors at the country and industry level. Col-
umn 1 of Table 3 indicates that robot adoption is negatively correlated
with the average growth rate of employment between 2005 and 2015.
However, this relationship is not statistically different from zero. It sug-
gests robot adoption is not labour replacing, which was also observed
by Graetz and Michaels (2018). Our finding indicates this result holds
in a larger country sample.

In column (2) of Table 3, we examine the relation between robot
adoption and the share of routine jobs. We find that increased robot
use contributes to a decline in the routine employment share. To assess
the economic magnitude, consider the difference between an industry
with a median trend in robot adoption and an industry with no robot
adoption, which equals 0.5 x -0.047 = -0.02 in the OLS regression. This
difference amounts to about 59% of the average change in the routine
employment share (which is -0.04, see Table 2). While this indicates a
sizeable impact of robots on occupational shifts, the R-squared of 2%
in column (2) where country fixed effects are partialled out, indicates
that many other factors than robot adoption affect changes in the share
of routine jobs. The coefficient more than doubles in the 2SLS regres-
sion, where we use the share of replaceable tasks in industries as an
instrument (panel B, column 2). The instrument is positively and sta-
tistically significantly correlated with robot adoption in the first stage,
which is reported in column (4) of panel B. Identification is strong, with
the Cragg-Donald Wald F statistic (268.53, assuming i.i.d. errors) and
the Kleibergen-Paap F-statistic (23.42) surpassing the 10% critical value
(16.38). Under-identification is rejected at the 5% level of statistical sig-
nificance. The considerable increase in the estimated second stage co-
efficient for robot adoption, when compared to OLS results, may reflect
measurement error in our main explanatory variable: an increase in the
noise-to-signal ratio in robot adoption will bias OLS estimates towards
zero. Moreover, the increase in the coefficient in 2SLS estimates may re-
flect that our instrument for robot adoption only varies across industries
and that global industry trends impact changes in routine employment
shares (see Section 5.2 below). Using ‘reaching and handling’ tasks as
an instrument gives similar results, although more prone to weak iden-
tification concerns (see Appendix Table A2).

An advantage of our dataset is the broad country coverage, including
various emerging market and (post-) transition economies. In column
(3) of Table 3, we differentiate the relation between robot adoption and
routine shares across high-income countries and EMTEs.?® We do so by

26 Given the number of robots installed in the PRC, it might be less appropriate
to classify it as an EMTE. To check for robustness of reported results, we omitted
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Table 3
Baseline regression results of employment growth and change in routine employment share.
Panel A: OLS
@ (2 3) 4
A Employment A Routineemployment share A Routineemployment share Percentile of changes in robot adoption
Percentile of changes in robot -0.354 -0.047+ -0.055"
adoption
(0.73) (0.02) (0.02)
Percentile of changes in robot 0.040"*
adoption x dummy EMTE
(0.02)
R? 0.001 0.025 0.028
Observations 700 700 700
Number of countries 37 37 37 37
Panel B: 2SLS (IV: Replaceable
tasks)
Percentile of changes in robot -2.714 -0.120* -0.156*
adoption
(3.03) (0.05) (0.06)
Percentile of changes in robot 0.136*
adoption x dummy EMTE
(0.06)
Replaceable tasks 0.892"
(0.18)
Cragg-Donald Wald F statistic 268.53
Kleibergen-Paap F-statistic 23.42
Kleibergen-Paap under 0.013
identification test (p-value)
R? -0.052 -0.027 -0.053
Observations 700 700 700 700
Number of countries 37 37 37 37

Notes: Robust standard errors in parentheses. Multi-way clustering by country and industry. The dependent variable employment growth in column (1) is the
average annual percentage growth in employment for the period from 2005 to 2015. The dependent variable in columns (2)-(3) is the change in the routine
employment share between 2005 and 2015. Column (4) reports the first stage for 2SLS estimation. The share of replaceable tasks in an industry is used as an
instrument for robot adoption. Regressions include the change in the investment to value added ratio and the change in (the log of) value added between 2005
and 2015 as control variables. Country fixed effects are included in all regressions and partialled out in the reported R?.

*p<0.1.
** p<0.01
** p<0.05

interacting a dummy variable for EMTEs with robot adoption.?” The re-
lationship between robot adoption and declining routine shares appears
to mainly occur in high-income countries: for both, the OLS and 2SLS
regressions, the negative overall coefficient estimate for robot adoption
in column (3) is almost equal in size to the positive interaction term
with the EMTE dummy, indicating that the effect of robot adoption is
essentially nullified in those countries.?® Since technical constraints to
robots replacing tasks are more likely to bind for firms in high-wage
advanced countries, improvements in robot capabilities might account
for the larger employment response in advanced countries compared to
EMTEs.

Additionally, our dataset allows us to further disaggregate routine
and non-routine employment shares into manual and analytic task-
intensive occupations. Results are reported in Table 4, again with OLS
results in panel A and 2SLS results in panel B.?° We find that the neg-
ative relation between robot adoption and routine employment shares
is exclusively driven by manual routine jobs: the estimates in column

China from the sample and re-classified it as a non-EMTE. This did not alter the
results (available upon request).

27 In the reported 2SLS regressions, we only instrument robot adoption but not
the interaction. We additionally estimated 2SLS regressions with the interac-
tion instrumented, which required interaction of our instrument with an EMTE
dummy in the first stage. Results, which are available upon request, were quan-
titatively and qualitatively similar to those reported, but more prone to weak
identification concerns.

28 OLS and 2SLS estimates of f are not statistically significantly different from
zero when estimating equation (1) for EMTEs only. Results are available upon
request.

2% Note that first stage results for the 2SLS case are the same as in Table 3.

(1) of Table 4 essentially mimic those of column (2) in Table 3, while
no relationship can be found between robot adoption and analytic rou-
tine employment shares (Table 4, column 2). It thus appears robots are
better suited to substitute for routine-manual tasks due to the ability
of robots to manipulate objects. Conversely, the share of non-routine
analytic occupations positively relates to robot adoption (column 4).
This is consistent with the intuition that non-routine analytic tasks are
complemented by robots in production (Autor, 2015). No relevant rela-
tionship is observed between robot adoption and changes in the manual
non-routine employment share (column 3).

5.2. Robustness and extensions

We performed several robustness checks. These are summarized
in Section 5.2.1. The other Sections focus on aspects considered rele-
vant to better understand the relation between robotization and rou-
tine employment shares and to motivate future research in this area.
Section 5.2.2 examines the relation between robot adoption across pro-
duction occupations that differ in task intensity. Section 5.2.3 examines
whether the results are driven by longer-term industry trends. Finally,
Section 5.2.4 explores the role of global industry trends in robot adop-
tion for driving country-industry changes in employment shares.

5.2.1. Robustness and heterogeneity

We first examine regression results when adding ICT investment to
the analysis. This is because computers seem particularly suited to sub-
stitute for analytic tasks and the development of computer and com-
munication equipment is not independent of robot adoption, such that
omitting ICT may bias the coefficient for robot adoption. Including vari-
ables for computer and communication investment leads to a consider-
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Table 4
Robot adoption and changes in employment shares by task type.
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Panel A: OLS
@ (2
A Routinemanual
employment share

A Routineanalytic
employment share

3 (]
A Non-routinemanual A Non-routineanalytic
employment share employment share

Percentile of changes in robot -0.049" 0.002
adoption
(0.02) (0.00)
A Investment to value added ratio 0.003* 0.001
(0.00) (0.00)
A (natural logarithm of) value 0.005 0.002
added
(0.01) (0.00)
R? 0.024 0.003
Observations 700 700
Number of countries 37 37
Panel B: 2SLS (IV: Replaceable tasks)
Percentile of changes in robot -0.119* -0.003
adoption
(0.05) (0.01)
A Investment to value added ratio 0.004" 0.001
(0.00) (0.00)
A (natural logarithm of) value 0.012 0.003
added
(0.01) (0.00)
R? -0.020 0.001
Observations 700 700
Number of countries 37 37

-0.008 0.055"
(0.01) (0.02)
-0.001 -0.003"
(0.00) (0.00)
0.004 -0.009
(0.00) (0.01)
0.007 0.031
700 700

37 37
-0.032 0.152+
(0.02) (0.05)
-0.001 -0.004"
(0.00) (0.00)
0.006 -0.019*
(0.01) (0.01)
-0.021 -0.059
700 700

37 37

Notes: Robust standard errors in parentheses. Multi-way clustering by country and industry. The dependent variable is the change in the respective employment
share between 2005 and 2015. The share of replaceable tasks in an industry is used as an instrument for robot adoption. Country fixed effects are included in all

regressions and partialled out in the reported R?.
*p<0.1.

% p<0.01

* p<0.05

able decline in the sample to 277 observations because the EU KLEMS
dataset does not report ICT investment by industry for many EMTEs.
The estimated coefficient for the relation between robot adoption and
routine employment shares is smaller but remains negative and statisti-
cally significant in the OLS and IV regressions (see column 1 of Appendix
Table A3).30

To avoid results being driven by certain countries, we inspect the pat-
tern of OLS residuals (depicted in Appendix Fig. A6). Furthermore, we
look at the distribution of country-specific parameter estimates, which
we obtain by interacting robot adoption with a matrix of country dummy
variables in our main OLS specification (see Appendix Fig. A7). There is
a cluster of high fitted values for Ireland (Appendix Fig. A6, panel A) and
two residuals from Romania and Sweden obtain a relatively high lever-
age and are potential outliers (Appendix Fig. A6, panel B). Moreover, the
country-specific estimation coefficients in Appendix Fig. A7 suggest co-
efficient estimates for Ireland, Lithuania, and Latvia deviate from other
countries. We hence exclude these 5 countries as well as Portugal, which
saw somewhat different employment dynamics than the rest of our sam-
ple, according to our descriptive analysis (cf. Appendix Fig. A1). Results
are reported in column (2) of Appendix Table A3. Dropping these coun-
tries does not qualitatively affect our main result.>!

Similarly, we also compute industry-specific coefficients for the re-
lationship between robot adoption and the share of routine jobs. Ap-
pendix Fig. A8 suggests that the electricity, gas, and water supply sector

30 Moreover, the change in the parameter estimate appears to originate from a
sample composition effect and not from omitted ICT variables: re-estimating the
baseline model with the 277 observations for which ICT data is available pro-
duces the same coefficient for robot adoption as in the presence of ICT variables:
-0.033%**,

31 We also excluded several of those countries/country groups separately, with
equally robust results. This also applies to excluding Japan from the analysis,
which was dropped from the sample by Graetz and Michaels (2018).

could be an outlier that potentially drives the overall result, together
with the education and R&D sector, which saw different routine employ-
ment trends according to our descriptive analysis. We thus re-estimate
our baseline regressions and sequentially omit these sectors. Columns
(3) and (4) of Appendix Table A3 suggest our results are not driven by
these sectors, although omitting the education and R&D sector in 2SLS
estimation pushes statistical significance of the robot adoption parame-
ter slightly beyond the critical 10% level (for the null hypothesis of no
relationship). To check whether countries that account for the majority
of robots installed are driving our estimates, we also excluded Japan,
South Korea, Germany, the PRC and the US from our estimates, leaving
the baseline estimate for robotization unaffected. For the same rationale,
we also excluded the high robot-adopting automotive and electronic in-
dustries (columns (5) and (6) of Appendix Table A3 respectively). All
parameter estimates for robot adoption where negative and statistically
different from O and t-tests do not allow rejecting the null hypothesis
of equality of these parameter estimates with the baseline result (at the
10% level of statistical significance).

We also investigated whether a sample split at the median (0.5) of
the percentile change in robot adoption affects our results. The results
indicate that the parameter estimate for the slower adopters (<0.5) are
considerably higher but estimated with low precision, so that they are
not statistically different from 0. Neither of the estimated OLS or IV
parameters for the sample split are statistically speaking different from
those in the baseline result of column (2) in table 3, in line with an
approximately linear relationship suggested by panel (a) in Fig. 1. 32

32 We also examined results when clustering standard errors at the country
level and not clustering at all. The alternative treatment of standard errors does
not affect the statistical significance of the relation between robot adoption and
the share of routine jobs in the OLS regressions and the coefficient () is different
from zero at the 1% level of statistical significance in the 2SLS regressions.
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Table 5
Robot adoption and changes in the employment share of production workers.
Panel A: OLS
@ 2 3 “@ 5)
No weight RII weight (global average) RII weight (U.S.) RII weight (Germany) RTI weight
Percentile of changes in robot adoption -0.031 -0.066"* -0.065"* -0.058"** -0.103
(0.02) (0.02) (0.02) (0.02) (0.08)
R? 0.016 0.036 0.054 0.035 0.019
Observations 450 450 450 450 450
Panel B: 2SLS (1V: Replaceable tasks)
Percentile of changes in robot adoption -0.083 -0.122* -0.143 -0.113* -0.318"
(0.04) (0.06) (0.05) (0.06) (0.19)
R? -0.018 0.013 -0.021 0.006 -0.033
Observations 450 450 450 450 450

Notes: Robust standard errors in parentheses. Multi-way clustering by country and industry. Dependent variable is the change in the employment share of production
workers between 2005 and 2015, with weights indicated in the column header. In Panel B, the share of replaceable tasks in an industry is used as an instrument
for robot adoption. Country fixed effects are included in all regressions and partialled out in the reported R?.

#* p<0.01
* p<0.05
* p<0.1.

5.2.2. Robot adoption and production workers

In Table 1, production workers are categorized as having a high con-
tent of routine-manual tasks. Yet, production workers are typically la-
belled blue-collar workers. Hence, the relation between robots and a
declining employment share of routine manual jobs could reflect a sub-
stitution of robots for blue collar production workers, instead of a sub-
stitution for routine tasks.

It is hard to rule out such an alternative interpretation. Yet, for 24
countries in our sample we are able to distinguish seven 2-digit ISCO
occupations that together comprise the occupational grouping labelled
‘production workers’ (cf. Table 1).3® The routine task-intensity for each
of these 2-digit occupations is provided by Autor et al. (2003) and, us-
ing an alternative approach, by Marcolin et al. (2019). We use these to
create a weighted average of the change in the employment share of
production workers. The weights we use are the routine intensity index
(RII) from Marcolin et al. (2019) and the routine task intensity (RTI)
gauged by Autor et al. (2003). The task-intensity by occupation is re-
ported in Appendix Table A4. Clearly, the seven occupations labelled
production workers are heterogeneous in the content of routine tasks.

The first column of Table 5 regresses the change in the employment
share of production workers on robot adoption. Results indicate a signif-
icant negative relation between robot adoption and changes in the share
of (routine manual task-intensive) production jobs. Subsequent columns
examine the same relation, but here changes in the share of production
jobs are calculated as a routine task-intensity weighted average change.
Occupations that have a higher content of routine tasks receive a greater
weight in this approach.3*

Weighting by routine intensity strengthens the negative association
between robotization and changes in the share of production jobs: the
resulting parameter estimates in columns (2)-(5) are larger compared
to column (1). This result is observed if we use as weights the global
average routine intensity (RII) reported by Marcolin et al. (2019), see
column (2), or the RII for the US or Germany (columns (3) and (4), re-
spectively). It is also observed if we weight occupations using the RTI

33 The seven ISCO 2-digit occupations that can be distinguished are ISCO 88
codes 71, 72, 73, 74, 81, 82, and 93. The countries for which we are able to
make this split are Austria, Belgium, Czech Republic, Denmark, Estonia, Fin-
land, France, Germany, Greece, Hungary, Ireland, Italy, Lithuania, Latvia, Malta,
the Netherlands, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden,
Turkey, and the United Kingdom.

34 The task-intensity measures are Pearson-transformed, i.e. centred at 0 with
a standard deviation of 1. We added +1 to the measure. Hence, an occupation
with mean routine intensity gets a weight of 1, a below-average routine intensity
occupation a lower weight, and an above-average routine intensity occupation
a weight above 1 (see Appendix Table A4).

from Autor et al. (2003), see column (5), although the parameter is es-
timated with less statistical precision in the OLS and 2SLS regressions.
Overall, these results provide additional evidence that robot adoption
is related to a decline in the share of occupations that have a higher
content of routine tasks.

5.2.3. Controlling for long-term industry trends

A remaining concern is that there could be a long-run decline in the
share of routine tasks done by workers, which is more pronounced in
industries investing more in robots yet not driven by robotization per
se. A common way to examine this concern is to regress employment
outcomes from a pre-period on the period during which robots were
adopted.

Ideally, we thus relate pre-period employment outcomes on the cur-
rent rise of robots. However, we are constrained by cross-country occu-
pations data which are available from 2000 onwards. By 2000, robots
were already being installed (Graetz and Michaels, 2018). Still, descrip-
tive statistics in Table 2 for the number of robots per thousand persons
employed in 2005 and 2015 suggest they became ubiquitous from the
mid-2000s onwards.

In column (1) of Table 6 we therefore regress the change in the rou-
tine employment share between 2000 and 2005 on our post-2005 mea-
sure of robot adoption. We indeed find a relationship, although the coef-
ficient is smaller and less precisely estimated compared to our baseline
results (cf. column (2) of Table 3).3° Pre-trend correlation is a necessary
condition for unobserved sector heterogeneity, but it is not a sufficient
condition to render identification invalid. This is partly because the pre-
trend does not pre-date the rise of robots. Yet, to control for longer-term
industry trends, we provide two additional estimation approaches: ex-
plicitly accounting for pre-trends by including the change in the routine
employment share between 2000 and 2005 as a lagged dependent vari-
able and including industry fixed effects.

Columns (2) and (3) of Table 6 add pre-trends to the regressions on
changes in the routine employment share and the routine manual em-
ployment share, respectively (cf. column (2) of Table 3 and column (1)
of Table 4). We observe a positive autocorrelation in employment dy-
namics. Yet, robot adoption adds additional information beyond those
pre-trends as the coefficient remains statistically significant. The esti-

35 Note that the pre-trends in employment share changes cover a 5 year pe-
riod. Estimated coefficients and standard errors thus have to be approximately
multiplied by a factor 2 to make them comparable with our main results for the
10 year period from 2005 to 2015. When the pre-trends are included as lagged
dependent variables (columns 2 and 3 of Table 6), they accordingly have to be
divided by 2.
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Table 6
Accounting for long-term industry trends.
Panel A: OLS
@ (2 3) “ [©)]
A Routineemployment A Routineemployment A Routinemanual A Routineemployment A Routinemanual
share2000-2005 share employment share share employment share
Percentile of changes in -0.020* -0.044 -0.046"* -0.016"* -0.026"
robot adoption
(0.01) (0.01) (0.01) (0.00) (0.01)
Change in dependent 0.174* 0.147
variable, 2000-2005
(0.10) (0.08)
Industry Fixed Effects No No No Yes Yes
R? 0.014 0.035 0.030 0.007 0.007
Observations 700 700 700 700 700
Panel B: 2SLS (1V:
Replaceable tasks)
Percentile of changes in -0.053" -0.113 -0.114"
robot adoption
(0.02) (0.05) (0.05)
Change in dependent 0.133 0.109
variable, 2000-2005
(0.09) (0.08)
Industry Fixed Effects No No No
R? -0.018 -0.012 -0.010
Observations 700 700 700

Notes: Robust standard errors in parentheses. Multi-way clustering by country and industry. The dependent variable is the change in the respective employment
share over the respective period. The share of replaceable tasks in an industry is used as an instrument for robot adoption. Regressions include the change in the
investment to value added ratio and the change in (the log of) value added between 2005 and 2015 as control variables. Country fixed effects are included in all

regressions and partialled out in the reported R?.
*** p<0.01
** p<0.05
* p<0.1.

mated coefficient is comparable to the baseline results. Perhaps the most
convincing evidence that the negative relationship between routine em-
ployment shares and robot adoption is not exclusively driven by spuri-
ous industry dynamics can be found in columns (4) and (5) of Table 6,
where we add industry fixed effects to our OLS regressions.® This is
a restrictive model that assumes industry-specific time trends in lev-
els and thus not only accounts for heterogeneous industry employment
trends but also removes a considerable degree of variation in the data
that may be relevant for identification. Yet, the negative association be-
tween robotization and routine employment trends is still observed and
statistically significant.

5.2.4. Global developments in robot adoption

As discussed in Section 2, advances in the technical ability of robots
might relate to the “reshoring” of jobs to advanced countries. For ex-
ample, Faber (2018) observes a decrease in labour demand in Mexico
associated with robot adoption in the United States. We explore this re-
lation in a cross-country context using two measures of robot adoption
that vary across industries but not across countries. First, we take global
averages, defined as the cross-country mean of the percentile change in
robot adoption by industry. This reflects the idea that in an intercon-
nected world those industries with higher robot adoption will see faster
declines in routine employment shares regardless of the location of pro-
duction. Second, we use robot adoption of U.S. industries to represent
global industry trends.

Results are reported in Table 7. In columns (1) and (2) the global av-
erages of industry-specific robot adoption is used. The regressions sug-
gest a statistically significant and negative relation between changes in
the routine employment share and global trends in robot adoption.®” In-
terestingly, the positive interaction between robot adoption and EMTEs

36 We cannot estimate the model with industry fixed effects using 2SLS because
the instrument only varies across industries.

37 Using measures of robot adoption that vary across industries but not across
countries, we also do not find a statistical significant association between robot

shown in column (2) no longer makes up for the negative overall robot
adoption parameter: the hypothesis that the sum of both parameters
adds up to O can be rejected at the 5% level of statistical significance.
This suggests that global developments in robot adoption impact labour
markets in EMTESs. Note, however, this is not observed if we use robot
adoption in U.S. industries to characterize global trends (see column
(4)).%8 Nevertheless, these exploratory regressions provide suggestive
evidence for the potential relevance of global production networks and
associated job reshoring patterns due to automation, which remains an
interesting area for further research.

6. Concluding remarks

We study the relation between industrial robots and occupational
shifts by task content. Using a panel of 19 industries in 37 high-income
and EMTEs from 2005-2015, we find that increased use of robots is as-
sociated with positive changes in the employment share of non-routine
analytic jobs and negative changes in the share of routine manual jobs.
The patterns that we document are robust to instrumental variable es-
timation and the inclusion of various control variables, but they differ
across levels of economic development: we observe a significant rela-
tion for high-income countries, but not in EMTEs. Finally, we do not
find a significant relation between industrial robot adoption and aggre-
gate employment growth. This suggests that industrial robots did not
replace jobs, but they did impact task demand and thus had disruptive
effects on employment.

Our analysis covered industrial robots, but much of the recent
robotic developments have been taking place in services, such as the
emergence of medical robots, logistics handling robots, and delivery by

adoption and the average annual percentage growth in employment in specifi-
cations with and without the interaction with a dummy for EMTEs.

38 It is also not observed if we use robot adoption in German industries to
characterize global trends.
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Table 7
Global industry trends in robot adoption.

Panel A: OLS

@ (2) [©)] “
Robot measure: Global average Global average U.s. uU.s.

A Routineemployment share A Routineemployment share A Routineemployment share A Routineemployment share
Alternative measure robot adoption -0.084 -0.101* -0.045" -0.052"*

(0.03) (0.04) (0.01) (0.02)
Alternative measure robot adoption x 0.054" 0.052**

dummy EMTE
(0.02) (0.02)

R? 0.034 0.039 0.039 0.043
Observations 700 700 700 700
Panel B: 2SLS (IV: Replaceable tasks)
Alternative measure robot adoption -0.128* -0.152* -0.067+ -0.080*

(0.05) (0.06) (0.02) (0.03)
Alternative measure robot adoption x 0.089* 0.086*

dummy EMTE
(0.04) (0.03)

R? 0.026 0.030 0.030 0.033
Observations 700 700 700 700

Notes: Robust standard errors in parentheses. Multi-way clustering by country and industry. The dependent variable is the change in the routine employment
share between 2005 and 2015. Column headers indicate which type of global measure has been used to calculate industry-specific robot adoption. The share of
replaceable tasks in an industry is used as an instrument for robot adoption. Regressions include the change in the investment to value added ratio and the change
in (the log of) value added between 2005 and 2015 as control variables. Country fixed effects are included in all regressions and partialled out in the reported R?.

*p<0.1.
** p<0.01
** p<0.05

means of drones. It is therefore likely that robots will continue to disrupt
labour markets and result in reallocation dynamics. Studying and under-
standing the socio-economic consequences of these disruptions will be
important (see e.g. Dauth et al. 2019). Retraining and reskilling of work-
ers seems inevitable, which should spur a major rethinking about educa-
tional goals, lifelong learning, and developing the right skills (Kim and
Park, 2020).
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Appendix

Fig. Al. Changes in employment shares by country
and task type between 2005 and 2015.

Notes: change in employment shares between 2005
and 2015. For aggregation, industries included in the
sample are weighted using their 2005 employment
share within the sample for each country. Agriculture
is omitted in the calculation for Ireland, which reports
a sudden swing in the routine manual employment
share (see Section 5.2.1 for robustness check excluding
Ireland). Source: updated occupations database from
Reijnders and de Vries (2018) by Buckley et al. (2020).

ZoaDLXHFZ I ZOF QWWYKrF<NLDZIZZOYX
LOESZOTEXSegdUONZOd02DEDXLL<0550>
Sw-=auw LHhp=20Z0508< OQODIZg®

oXonzZzdxrzX
O0>z>200>TuW
N =—<=0orO=

PRT

I outine manual

non-routine manual

routine analytic

I on-routine analytic




G.J. de Vries, E. Gentile and S. Miroudot et al. Labour Economics 66 (2020) 101885

Fig. A2. Changes in employment shares by in-

N+ dustry and task type between 2005 and 2015.
Notes: change in employment shares by in-
dustry between 2005 and 2015. Unweighted

. average changes. Source: updated occu-

pations database from Reijnders and de
Vries (2018) by Buckley et al. (2020).
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Fig. A4. Robotization by industry in 2005 and 2015.

w

A Notes: robot stock per thousand persons employed by indus-
try in 2005 (squares) and 2015 (triangles). Sources: robot
stock from IFR and employment from Reijnders and de
Vries (2018) updated by Buckley et al. (2020).
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Table Al
Industry codes.

ISIC rev 3.1 code

Short description

Long description

AtB
15t16
17t18
19

20
21t22
23

Agriculture

Food products
Textiles

Leather

Wood products
Paper

Petroleum
Chemical

Plastic
Non-metallic mineral
Metal

Machinery
Electronics
Automotive

Other

Mining

Utilities
Construction
Education, and R&D

Agriculture, hunting, forestry and fishing
Food, beverages and tobacco

Textiles and textile

Leather, leather and footwear

Wood and products of wood and cork
Pulp, paper, printing and publishing
Coke, refined petroleum and nuclear fuel
Chemicals and chemical

Rubber and plastics

Other non-metallic mineral

Basic metals and fabricated metal
Machinery, not elsewhere classified (n.e.c.)
Electrical and optical equipment
Transport equipment

Manufacturing n.e.c.; recycling

Mining and quarrying

Electricity, gas and water supply
Construction

Education, and R&D
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a) Residuals vs. fitted values b) Leverage vs. residuals
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Fig. A6. Residual patterns for main OLS specification.

Notes: Panel a plots the OLS residuals (deviation of predicted from actual value, vertical axis) against the fitted values from the OLS model (horizontal axis). Panel b
plots the leverage (influence) every observation gets in the OLS regression, a measure of distance from the mean in the explanatory variables (vertical axis), against
normalized squared residuals (horizontal axis). All values are based on column (2) in panel A of Table 3.

a) Overall distribution b) Country-specific coefficient plot
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Fig. A7. Country-specific OLS coefficients.

Notes: Fig 6 displays country-specific coefficients for an OLS regression model where we augment the specification in column (2) of Table 3 (panel A) with an
interaction of robot adoption with country dummy variables. The distribution of those country-specific interactions with robot adoption is depicted in Figure 6(a)
using a histogram and a kernel density estimator. Figure 6(b) displays the estimated coefficients by country, including their 95% confidence interval.
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Table A2
2SLS results for reaching and handling.
@ @ 3) ()]

A Employment

A Routineemployment
share

A Routineemployment
share

Percentile of changes
in robot adoption

Percentile of changes in robot

adoption

Percentile of changes in robot

adoption x dummy EMTE

Reaching and handling tasks

Cragg-Donald Wald F statistic

Kleibergen-Paap F-statistic
Kleibergen-Paap under
identification test (p-value)
RZ

Observations

Number of countries

-1.586

(3.81)

-0.013
700
37

-0.134*

(0.08)

-0.047
700
37

-0.169

(0.11)
0.149

(0.10)

-0.075
700
37

1.438
(0.43)
129.47
11.44
0.025

700
37

Notes: Robust standard errors in parentheses. Multi-way clustering by country and industry. The dependent variable employment growth in column (1) is the
average annual growth in employment for the period from 2005 to 2015. The dependent variable in columns (2)-(3) is the change in the routine employment
share between 2005 and 2015. Column (4) reports the first stage for 2SLS estimation. Reaching and handling tasks are used as an instrument for robot adoption.
Regressions include the change in the investment to value added ratio and the change in (the log of) value added between 2005 and 2015 as control variables.
Country fixed effects are included in all regressions and partialled out in the reported R2.

***p<0.01.

**p<0.05.

*p<0.1.
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Table A3
Robustness analysis.
Panel A: OLS
@ () 3 “@ ) (6) @) ®
Excluding Excluding
Sector several major several Percentile of Percentile of
ICT investment 6 countries Sector ‘utilities’ ‘education and robot-adopting high-adopting changes in robot  changes in robot
included omitted omitted R&D’ omitted countries industries adoption <0.5 adoption >0.5
Perc. of A -0.033* -0.039" -0.052" -0.040" -0.047 -0.038* -0.158 -0.066"
robot adoption  (0.01) (0.01) (0.01) (0.02) (0.02) (0.02) (0.10) (0.04)
Perc. of A IT 0.024
adoption (0.03)
Perc. of A CT -0.009
adoption (0.03)
R? 0.044 0.044 0.032 0.019 0.021 0.012 0.011 0.029
Observations 277 588 663 663 605 626 349 351
Panel B: 2SLS (1V: Replaceable tasks)
Perc. of A -0.085" -0.109" -0.134" -0.106 -0.130" -0.135* -1.367 -0.060
robot adoption  (0.04) (0.04) (0.05) (0.07) (0.05) (0.06) (0.84) (0.21)
Perc. of A IT 0.035*
adoption (0.02)
Perc. of A CT -0.021
adoption (0.03)
R? -0.015 -0.065 -0.038 -0.022 -0.032 -0.052 -0.448 0.029
Observations 277 588 663 663 605 626 349 351

Notes: See Section 5.2.1. Regressions for the percentile of changes in robot adoption (Perc. of A robot adoption) on changes in the routine employment share between
2005 and 2015. Robust standard errors in parentheses. Multi-way clustering by country and industry. In column (1) the percentile of changes in information
technology adoption (Perc. of A IT adoption) and the percentile of changes in communication technology adoption (Perc. of A CT adoption) are included as
explanatory variables. Panel B uses the share of replaceable tasks in an industry as an instrument for robot adoption. Regressions include the change in the
investment to value added ratio and the change in (the log of) value added between 2005 and 2015 as control variables. Country fixed effects are included in all

regressions and partialled out in the reported R?.

#* p<0.01.
** p<0.05.
* p<0.1.

Table A4

Routine task-intensity of occupations grouped as ‘production workers’.
ISCO88 code Description occupation RII (Global average) RII (U.S.) RII (Germany) RTI
71 Extraction and building trades workers 1.031 1.209 0.955 0.815
72 Metal, machinery and related trade work 1.269 1.209 0.955 1.457
73 Precision, handicraft, craft printing and related trade workers 0.952 1.598 0.477 2.589
74 Other craft and related trade workers 0.810 0.626 0.477 2.238
81 Stationary plant and related operators 2.930 2.181 3.342 1.323
82 Machine operators and assemblers 2.480 3.541 2.865 1.493
93 Labourers in mining, construction, manufacturing and transport 2.886 2.375 3.342 1.449

Notes: The routine intensity index (RII) is from Marcolin et al. (2019) and the routine task intensity (RTI) from Autor et al. (2003). The measures are Pearson-
transformed, i.e. centred at 0 with a standard deviation of 1. We added +1 to the measure. Hence, an occupation with mean routine intensity gets a weight of 1, a
below-average routine intensity occupation a lower weight, and an above-average routine intensity occupation a weight above 1.
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