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This paper examines the impact of industrial robots on jobs. We combine data on robot adoption and occupations 

by industry in thirty-seven countries for the period from 2005 to 2015. We exploit differences across industries 

in technical feasibility – defined as the industry’s share of tasks replaceable by robots – to identify the impact of 

robot usage on employment. The data allow us to differentiate effects by the routine-intensity of employment. 

We find that a rise in robot adoption relates significantly to a fall in the employment share of routine manual 

task-intensive jobs. This relation is observed in high-income countries, but not in emerging market and transition 

economies. 
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. Introduction 

Rapid improvements in robot capabilities have fuelled concerns

bout the implications of robot adoption for jobs. While the creation

f autonomous robots with flexible 3D movement continues to be a ma-

or challenge to engineers, rapid progress is being made. Robots can

ow perform a variety of tasks, such as sealing, assembling, and han-

ling tools. As robot capabilities continue to expand and unit prices fall,

rms are intensifying investment in robots ( Frey and Osborne, 2017 ;

raetz and Michaels, 2018 ; Acemoglu and Restrepo, 2020 ). What is the

mpact of robot adoption on labour demand? Do robots substitute for

asks previously performed by workers? 

The main contribution of this paper is to empirically study the im-

act of industrial robots on the occupational structure of the workforce

cross industries in a set of high-income as well as Emerging Market and

ransition Economies (EMTEs). We combine a large and detailed occu-

ations database with data on industrial robot deliveries from the Inter-

ational Federation of Robotics. The database on occupational employ-

ent from Reijnders and de Vries (2018) allows us to examine the share

f employment in occupations with a high content of routine tasks – i.e.

asks that can be performed by following a well-defined set of proce-

ures. We delineate occupations along two dimensions of the character-

stics of tasks performed, namely ‘analytic’ versus ‘manual’, and ‘routine’

ersus ‘non-routine’. 1 We thus distinguish four key occupational group-
∗ Corresponding author. 

E-mail address: g.j.de.vries@rug.nl (G.J. de Vries). 
1 The distinction between manual and analytic occupations is based on differ- 

nces in the extent of mental versus physical activity. h
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ngs, namely routine manual, routine analytic, non-routine manual, and

on-routine analytic task-intensive occupations (as in Autor et al. 2003 ;

eijnders and de Vries 2018 ; Cortes et al. 2020 ). We follow Graetz and

ichaels (2018) in constructing measures of robot adoption by country-

ndustry pairs and relate these to changes in occupational employment

hares. Our sample covers 19 industries for 37 countries at varying lev-

ls of development from 2005 to 2015, and includes major users of in-

ustrial robots, such as the Peoples Republic of China (PRC), Japan,

outh Korea, Germany, and the United States. Our main finding is that

ountry-industry pairs that saw a more rapid increase in robot adop-

ion experienced larger reductions in the employment share of routine

anual jobs. 

Our approach is motivated by the following economic considera-

ions. Firms produce a variety of products using a continuum of tasks

 Acemoglu and Autor, 2011 ), and these products differ in the number

f tasks that can be performed by robots ( Graetz and Michaels, 2018 ).

or example, the share of replaceable tasks by robots differs between

pparel and automotive and appears larger in the latter. 2 This gives rise

o differences across industries in the technical feasibility of robots substi-

uting tasks previously performed by humans. Advances in machine ca-

abilities expand the set of tasks carried out by machines ( Acemoglu and

estrepo, 2018 ). Firms will adopt robots if it is technically feasible and

he profit gains exceed the costs of purchasing and installing robots.

iven higher wages in advanced countries, the technical constraints to
2 See e.g. the Economist, 24 August 2017, “Sewing clothes still needs human 

ands. But for how much longer? ”
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3 Autor et al. (2003) examine the impact of computerization on labour de- 

mand in U.S. industries from 1960-1998. They find a positive relation between 

the demand for non-routine tasks and computerizing industries. Ross (2017) and 

De La Rica et al. (2020) study the impact of RBTC on the wage premium for job 

tasks. 
4 Acemoglu and Restrepo (2020) find that robot adoption lowers labour de- 

mand in US local labour markets. Dauth et al. (2019) argue in an analy- 

sis for Germany that workers displaced by robots reallocate to services and 

there is no decline in aggregate employment. In a cross-country analysis, 

Ghodsi et al. (2020) find that robot adoption does not significantly affect ag- 

gregate employment, although the impact varies at the industry level. 
obots replacing tasks are more likely to bind for firms in these coun-

ries. Hence, improvements in robot capabilities would result in a larger

mployment response in advanced countries compared to developing

ountries. 

We use these economic insights in our analysis. In particular, the

echnical feasibility of adopting robots guides our instrumental variables

IV) strategy to identify the causal relation between robots and labour

emand. Economic feasibility motivates our distinction of the impact

f robot adoption between advanced and developing countries. Using

wo-stage least squares (2SLS) estimation, we find that robot adoption

owers the employment share of routine manual occupations. This rela-

ion is observed in high-income countries, but not in emerging market

nd transition economies. 

This paper relates to recent studies that examine the impact of robot

doption on socio-economic outcomes. Graetz and Michaels (2018) find

hat robot adoption contributed to an increase in productivity growth

cross industries in high-income countries between 1993 and 2007.

heir findings suggest that robot adoption did not reduce employ-

ent, which is corroborated in this paper. This is also observed by

auth et al. (2019) , but not by Acemoglu and Restrepo (2020) , who ex-

mine geographic variation in robot adoption across the United States

nd find that robots are labour replacing. Dauth et al. (2019) use de-

ailed linked employer-employee data for Germany to show that dis-

lacement effects are cancelled out by reallocation effects, such that in

he aggregate no employment effects from robot adoption are observed.

ata availability did not allow Graetz and Michaels (2018) to exam-

ne the impact of robots on workers that perform different tasks. Yet,

utor (2015) emphasizes that workers with routine task-intensive occu-

ations are most likely to be affected by automation. This paper aims to

ontribute to our understanding of the impact of robots on such occu-

ational shifts. 

The remainder of this paper is organized as follows. Section 2 re-

iews the key theoretical mechanisms between automation and labour

emand. Section 3 describes the methodology and instrumental vari-

bles. Section 4 documents patterns in the occupational structure of the

orkforce and robot adoption. Section 5 empirically studies the impact

f robot adoption on the task content of labour demand. Section 6 con-

ludes. 

. Theoretical framework 

This section starts with a discussion of robot adoption in the context

f a traditional capital-labour model. In this model, technology is factor-

ugmenting: it increases the efficiency of one of the production factors

mployed ( Acemoglu and Autor, 2011 ). The model puts the focus on

he complementarity and substitutability between robots and tasks per-

ormed by workers. We then describe recent modelling efforts that em-

hasize the ability of machines to replace workers in a widening range

f tasks ( Acemoglu and Restrepo, 2018 ). These models help to clarify

echanisms by which robots may impact labour demand and motivate

ur empirical analysis. 

The models we describe analyse the impact of automation. Automa-

ion refers to computer-assisted machines, robotics, and artificial intel-

igence ( Acemoglu and Restrepo, 2018 ). Thus, robots are a subset of

utomation. Robots are driven by algorithms, which have become in-

reasingly complex. They can now operate without requiring anyone to

xplicitly program the mechanisms of the tasks performed. Yet, not all

lgorithms drive a physical machine. In fact, many algorithms are em-

odied in devices or applications. Once these algorithms are designed,

hey can be used for many tasks anywhere and at any time. For robots,

he algorithms are embodied in the machines. Expanding the range of

asks performed by robots thus requires investing in robots, i.e. robots

re rival ( Martens and Tolan, 2018 ). This contrasts to algorithms, which

re non-rival in nature. Robots are more frequently studied in empiri-

al work because of the availability of statistics on their use. However,
iven the properties of robotics, studies that use robot data capture only

art of the impact of automation on labour. 

In the traditional model, automation enhances the productiv-

ty of workers by complementing the tasks they perform (see e.g.

utor et al. 1998 ; Feenstra, 2008 ; Van Reenen 2011 ). Yet, for work-

rs who perform tasks that can be substituted by automation, increas-

ng availability of machines will lower their labour demand. Scholars

ave argued that new technologies tend to substitute for occupations

hat are intensive in routine tasks, such as assemblers, and complement

on-routine task-intensive occupations, such as managers and techni-

al scientists ( Autor et al. 2003 ; Van Reenen 2011 ; Goos et al. 2014 ;

auth et al. 2019 ). This is because for routine tasks, such as monitoring,

easuring, controlling, and calculating, there are well-specified proce-

ures which allow the task to be automated. Yet, knowing the rules

hat govern task procedures is not a trivial requirement. For many non-

outine tasks, such as those requiring creativity and problem-solving

kills, automation is difficult and rather complements the performance

f these tasks done by humans. In line with this reasoning, an analysis

or Western European countries by Goos et al. (2014) finds that recent

echnological progress has been replacing workers doing routine tasks.

his is referred to as “routine-biased technological change ” (RBTC). 3 

Predictions in the traditional model are straightforward. Firms adopt

obots if it is economically feasible to do so, which is the case when prof-

ts exceed purchasing and installation costs. Therefore, substitution of

obots for routine tasks is more likely in countries with higher wage lev-

ls, and there a fall in the fixed costs or the rental price will result in an

ncrease in robot adoption ( Graetz and Michaels, 2018 ). 

Recent modelling efforts by Acemoglu and Restrepo (2018) add a

istinctive feature of automation: the technical ability of machines to

eplace workers in a widening range of tasks. They split the production

rocess into tasks done by workers and machines. Advances in machine

apabilities expand the set of tasks carried out by machines and replace

abour, thus lowering labour demand. 

However, robotic automation technologies also result in the creation

f new tasks that cannot be done by machines, such as programming,

esign, and maintenance of high-tech equipment ( Acemoglu and Re-

trepo, 2019 ). This ‘re-instatement effect’ increases labour demand. The

ombination of tasks displaced by robots and the re-instatement of new

asks determine the reallocation of tasks between workers and machines.

Complementarity between man and machine in the Acemoglu and

estrepo (2018) model originates from two indirect effects that come

n top of complementarity effects in the traditional model ( Martens and

olan, 2018 ). The first is a price-productivity effect whereby robot

doption lowers prices of produced goods, leading the industry to ex-

and sales and increase its demand for labour. The second is a scale-

roductivity effect whereby lower aggregate goods’ prices enable the

local) economy to expand and thus also increase labour demand. The

verall impact of robotization on labour demand then depends on

hether the displacement or the complementary effects dominate. So

ar, empirical evidence on the aggregate employment effects from robo-

ization are inconclusive. 4 

In line with Acemoglu and Restrepo (2018) , Graetz and

ichaels (2018) model the production process as a continuum of

asks. Yet, Graetz and Michaels (2018) assume that products differ
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8 The employment outcome of interest is either the average annual percent- 

age growth rate in employment by country-industry pair, which is estimated as 

((ln(EMP ci,2015 /EMP ci,2005 )) /10) ∗ 100, or it is the change in the task-specific 

employment share by country-industry pair, measured as the share in 2015 mi- 

nus the share in 2005. 
9 Robot adoption is defined as the number of robots installed per thousand 
n the share of tasks that can be carried out by machines. Garments

rovide a clear example: sewing garments is a complex process that

equires human intuition and dexterity, which is difficult to program.

n contrast, it has proven easier to program robots to perform tasks

n automobile assembly lines. 5 Automation of car assembly lines has

elped to reduce error rates and enhances the control of repeatable

asks. The technical feasibility of machines taking over tasks thus differs

y industry. 

In this expanded model, the improvement of machine capabilities

ay drive automation. 6 That is, if robot adoption is constrained by

he production nature of certain industries, the rental price of robots

oes not matter. Rather, it is an expansion in machine capabilities that

ill drive automation. Given that labour costs are higher in advanced

conomies, the relaxing of technological constraints by expanding robot

apabilities will lead to higher economic incentives for robotization in

dvanced countries and hence stronger employment responses. 

The traditional and expanded model capture the key economic mech-

nisms driving robot adoption and their employment effects. The PRC is

n interesting case to illustrate how additional factors drive robot adop-

ion. Wage levels in China are below high-income countries, but it is

he world’s largest adopter of industrial robots ( Cheng et al. 2019 ). This

eems counterintuitive to the modelling of robot adoption. Yet, robot use

n China does coincide with rising wages and a slowdown in the growth

f its working-age population. Besides labour costs, concerns over prod-

ct quality and production expansion are found to influence decisions

y firms in adopting robots ( Cheng et al. 2019 ). In addition, the Chi-

ese government has initiated various programs and provides subsidies

hat encourage the development of the robotics industry ( Yang, 2017 ;

in, 2018 ). 

Robots may also reverse the trend to relocate fabrication activities

rom advanced towards low-wage countries. In an interesting contri-

ution, Faber (2018) points out that advances in robotics will reduce

roduction costs, no matter where the product is produced. That, he ar-

ues, will increase the attractiveness of producing domestically relative

o offshoring. In effect, workers in export sectors of developing countries

an be displaced by the adoption of robots, either onshore or offshore.

ssentially, foreign robots act as a form of competition on the export

arket. Using a methodological approach similar to Acemoglu and Re-

trepo (2020) , Faber (2018) finds that US robot adoption lowers labour

emand in Mexican export-producing sectors. 7 

These models inform the empirical analysis in our paper. The next

ections describe the methodology and data to examine the aggre-

ate (cross-country) implications of robotization. We view this analy-

is as a complementary approach to the within-country comparisons in

cemoglu and Restrepo (2020) , Dauth et al. (2019) , and Faber (2018) . 

. Methodology 

To examine the relation between robot adoption and changes in the

tructure of the workforce, we estimate regressions similar to those in

raetz and Michaels (2018) that take the form 

L ci = βΔRobot adoptionci + 𝐗 ′ci γ + δc + ε ci , (1)
5 Clearly, some textile production can now also be nearly fully automated; an 

xample is the Adidas ’Speed factory‘ ( Faber, 2018 ). Yet, relatively speaking, 

he share of tasks that robots can perform varies across industries. 
6 We thank an anonymous referee for pointing this out. 
7 If robots result in reshoring of a factory, this will affect all workers at the 

xporting plant in the developing country. Faber (2018) finds that Mexican 

orkers in commuting zones most affected by U.S. robots are low-educated ma- 

hine operators and technicians in manufacturing and high-educated workers in 

anagerial and professional occupations. Using the World Input-Output Tables, 

renz et al. (2018) find evidence for a positive relation between reshoring and 

he degree of automation. 

p

r

f

w

i

t

f

c

t

p

h

i

here ∆L ci is the change in the employment outcome of interest in in-

ustry i of country c . 8 ∆Robot adoption ci is the change of the robot

tock relative to labour input in each country-industry pair. 9 Most spec-

fications include control variables which are changes in: investment to

alue added ratios, and (the natural logarithm of) value added. We also

xamine results controlling for the adoption of information and com-

unication technologies (discussed below). 𝛿c represents country fixed

ffects, which in a first-difference equation are equivalent to country-

pecific time trends in a levels’ equation. Regressions are estimated in

ong-run changes between 2005 and 2015 because we are interested in

onger-term trends. The regressions weight industries using their 2005

mployment shares within each country. This ensures that estimates re-

ect the importance of industries within countries, but we give equal

eight to countries in the analysis (as e.g. in Graetz and Michaels, 2018 ).

e use heteroscedasticity-robust standard errors that are two-way clus-

ered by country and industry. 10 This is a conservative approach because

he resulting standard errors are typically larger compared to one-way

lustering by country or industry. 

.1. Endogeneity concerns and 2SLS estimation 

Estimating (1) using OLS raises several concerns about endogeneity.

irst, one might worry about reverse causality and omitted variable bias.

or instance, industries that experience a faster growth in product de-

and may invest more in robots. Especially if the labour market is tight,

 positive demand shock is more likely to result in investment in robots

ather than an expansion of employment ( Faber, 2018 ). 11 This is a case

f reverse causality, because lower employment growth results in higher

obot adoption. Also, relevant variables might be omitted from the re-

ression analysis. For instance, Harrigan et al. (2016) find that adoption

f new technologies is mediated by technically qualified workers. Sec-

nd, one may worry about attenuation bias of 𝛽 in (1) due to measure-

ent error in the variable robot adoption. Clearly, the available data

n robot adoption, discussed in Section 4.1 , is imperfect, as it does not

nform on the quality and other characteristics of robots installed. In

ddition, we estimate regression specifications in changes, which may

orsen the signal-to-noise ratio compared to regressions of variables in

evels. Due to measurement error, the variable robot adoption could be

orrelated with the error term 𝜀 ci and OLS estimation of 𝛽 would be bi-

sed downwards. Finally, industries that adopt robots may differ from

ther industries in non-random ways, which would also bias the coeffi-

ient if not appropriately controlled for. Hence, the direction of bias in

is not clear a priori, although the previous literature suggests that a

ownward bias in OLS is more likely (e.g. Graetz and Michaels, 2018 ). 

In an attempt to address these endogeneity concerns, we

se two industry-specific instruments introduced by Graetz and
ersons employed. We follow Graetz and Michaels (2018) and use the percentile 

ank of the change in robot adoption as our main explanatory variable. This is 

urther elaborated upon in Section 4.1 . 
10 We implement Stata’s ‘ivreg2’ command for OLS and 2SLS regressions. Two- 

ay clustered standard errors are robust to arbitrary heteroscedasticity and 

ntra-group correlation within each of the two (non-nested) categories “coun- 

ry ” and “industry ” ( Cameron et al. 2012 ). This allows for robust inference, 

or example, if errors are correlated within countries (e.g. due to unobserved 

ountry-specific policies) and have separate correlation structures within indus- 

ries (e.g. due to technology shocks). 
11 In his analysis of the Mexican labour market, Faber (2018) points out that a 

ositive demand shock due to the North American Free Trade Agreement may 

ave put upward pressure on industries or local labour markets to adopt robots 

f they had less room to expand employment. 
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16 Purchases of services robots are only available for recent years and few coun- 

tries, which limits studying the impact on task demand of robot adoption in 

services sectors. 
17 Program code to replicate the analysis is available from the authors upon 

request. 
18 The perpetual inventory method to build robot stocks is: RS ci,t = (1- 

d) ∗ RS ci,t-1 + RD ci,t , where RS is the robot stock of industry i in country c at 

time t ; RD are robot deliveries, and d is the depreciation rate. Our main results 

are robust to building the robot stock using a 5 and a 15 percent depreciation 
ichaels (2018) and estimate (1) using 2SLS. 12 The first instrument

easures the share of each industry’s labour input that is replaceable

y robots . This instrument is constructed using information on the tasks

erformed by robots ( IFR, 2012 ). As discussed above, the extent of robo-

ization for each task could be endogenous to industry conditions. There-

ore, Graetz and Michaels (2018) use information on US occupations in

ach industry from the 1980 census, which dates back before the rise of

obots. Occupations are defined as ‘replaceable’ if (part of) their tasks

ould have been replaced by robots in 2012. They then compute the

raction of hours worked in each industry in 1980 that was performed

y occupations that subsequently became more prone to replacement

y robots. This instrument is not without limitations: it is based on data

rom the US and labour shares might therefore be different if constructed

sing data from other countries. 13 

The second instrument is motivated by rapid improvements in the

bility of robotic arms to perform ‘reaching and handling’ tasks. It mea-

ures the prevalence of occupations in each industry that require reach-

ng and handling tasks compared to other physical demands in 1980, prior

o robot adoption. Robotic arms are a salient characteristic of robots,

nd much technological advances are linked to the development of these

obotic arms ( Graetz and Michaels, 2018 ). It is therefore more likely that

obotic arms are a technological characteristic of robots, less driven by

he demand side (due to industries’ task requirements), which could re-

ect reverse causality. This instrument is constructed using the extent

o which occupations in each US industry require reaching and handling

asks compared to other physical tasks in 1980. 14 Similar limitations as

o the first instrument apply here, but one may argue that this instru-

ent is less likely to violate the exclusion restriction. 

Clearly, neither instrument can guarantee to resolve all endogene-

ty concerns. Both instruments reflect variation across industries in the

hare of tasks that are potentially replaceable by robots, which may cor-

elate with other changes over time. Nevertheless, the instruments are

elpful to contrast OLS with 2SLS results. 

. Data and descriptive analysis 

We first describe the data on robots and occupations in Section 4.1 .

escriptive statistics are presented in Section 4.2 . 

.1. Occupations and robots 

We combine two datasets with information on occupations and robot

urchases. The first dataset with occupational employment by country-

ndustry originates from Reijnders and de Vries (2018) and was updated

y Buckley et al. (2020) . The data is constructed using detailed survey

nd census data from statistical offices for the period from 2000 to 2015.

he sources used in constructing this dataset closely align with those

rom other studies. 15 The dataset provides employment for thirteen oc-

upational groupings by country-industry pairs. It covers 40 countries,

amely the 27 members of the European Union (per January 2007), Aus-

ralia, Brazil, Canada, India, Indonesia, Japan, Mexico, the PRC, Russia,

outh Korea, Chinese Taipei, Turkey and the United States. For each
12 The instruments are computed for 2-digit industries in the ISIC revision 3 

lassification, which matches with the industry information on robot stocks and 

ccupational employment shares presented in Section 4.1 . Note that the instru- 

ents do not vary across countries but only across industries. 
13 Also note the replacement values are an upper bound because occupations 

re considered to be replaceable even if only part of their work can be replaced 

y robots. 
14 Information on the task content of occupations is taken from the Dictionary 

f Occupational Titles. 
15 For example, for the U.S., the sources are the 2000 Census and the annual 

merican Community Surveys. These sources are also used in Autor (2015) . 

ata for European countries are from the harmonized individual level European 

nion Labour Force Surveys, which are also used in Goos et al. (2014) . 
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f these countries, occupational employment shares by 35 ISIC revision

.1 industries that cover the overall economy are distinguished. They

nclude 14 two-digit manufacturing industries (such as textile manu-

acturing and electronics manufacturing), as well as agriculture, min-

ng, construction, utilities, finance, business services, personal services,

rade and transport services, and public services industries. The dataset

hus has dimensions of 13 occupational groupings × 35 industries × 40

ountries × 16 years. Occupation data is intrinsically not exactly compa-

able across countries, and in practice will also vary due to differences

n the type of sources and national data collection practices. Intertempo-

al changes within country-industries are likely more consistent because

eijnders and de Vries (2018) use data from the same national source

or each country. Our empirical analysis exploits this within-country

ariation. 

We examine the impact of robot adoption on tasks, which we dis-

inguish into routine versus non-routine and manual versus analytic

asks. Our measurement strategy is to infer the impact of robot adop-

ion on tasks from data on the occupational structure of the workforce.

he distinction between occupations with different task intensities is

ased on the so-called Routine Task Intensity (RTI) index developed by

utor et al. (2003) and mapped into the International Standard Classifi-

ation of Occupations (ISCO 88) by Goos et al. (2014) . Table 1 provides

he allocation of occupational groupings to tasks. 

The second database includes deliveries of industrial robots by

ountry-industry from the International Federation of Robotics (IFR). 16 

he IFR provides country data on the number of industrial robots de-

ivered from 1993 onwards. Yet coverage varies and the breakdown

f robot investment by country-industry is only consistently available

or most countries after 2004. In addition, robot investments increased

apidly during the 2000s. We therefore build the dataset using informa-

ion for all available years but focus on the period from 2005 to 2015

n the empirical analysis. 17 

We use the perpetual inventory method to build robot stocks, assum-

ng a depreciation rate of 10% as in Graetz and Michaels (2018) . 18 We

hen define ‘robot densification’ or simply ‘robot adoption’ as the robot

tock per thousand persons employed. We examine changes in robot

doption over time. The distribution of changes in robot adoption for

he country-industries included in our analysis has mostly either zero or

mall positive values, with a long right tail. Analysing raw changes in

obot density is therefore not recommendable and we use the percentile

f changes in robot adoption (based on the employment-weighted dis-

ribution of changes) as in Graetz and Michaels (2018) . 19 
ate. 
19 We follow Graetz and Michaels (2018) and calculate within- 

ountry employment-weighted distributions of changes in robot 

doption between 2005 and 2015. We use the Stata code 

hat Graetz and Michaels (2018) made available at https:// 

ataverse.harvard.edu/dataset.xhtml?persistentId = doi:10.7910/DVN/5JWBXU . 

pecifically, we denote robot adoption by RA ci,t = RS ci,t /EMP ci,t , i.e. the robot 

tock per thousand persons employed in industry i of country c . We denote ws c 
he weighted change in robot adoption of country c , which is the summation of 

hanges in robot adoption by industry i weighted by their employment shares. 

he change in robot adoption net of the weighted change in robot adoption 

s ΔRA ci = (RA ci,t - RA ci,t-1 ) - ws c . We then calculate the percentile rank of 

he change in robot adoption ( ΔRA ci ) and use this variable in the regression 

nalysis. The use of percentiles is common in the economics literature and 

elpful when the data is skewed, see for example Autor et al. (2003) . 

https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/5JWBXU
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Table 1 

Mapping occupations to tasks. 

Routine Non-routine 

Manual Production workers (71-74, 81-82, 93) Agricultural 

workers (61-62, 92) Others (01, 999) 

Support-services workers (51, 910, 912-916) Drivers (83) 

Analytic Administrative workers (41-42) Legislators (11) Managers (12-13) Engineers (21, 31) Health professionals 

(22, 32) Teaching professionals (23, 33) Other professionals (24, 34) Sales 

workers (52, 911) 

Notes : Mapping of thirteen occupations from Reijnders and de Vries (2018) to four different groups based on Autor et al. (2003) and Goos et al. (2014) . Numbers 

in brackets refer to International Standard Classification of Occupations codes (ISCO 88). 

Table 2 

Descriptive statistics. 

Obs. Mean SD p5 p95 

Dependent variables 

Employment growth (average annual, in %) 700 -0.78 3.41 -6.0 3.9 

Δ Routine employment share 700 -0.04 0.10 -0.2 0.1 

Δ Routine manual employment share 700 -0.04 0.12 -0.2 0.1 

Δ Routine analytic employment share 700 -0.00 0.05 -0.1 0.1 

Δ Non-routine manual employment share 700 -0.00 0.06 -0.1 0.1 

Δ Non-routine analytic employment share 700 0.04 0.10 -0.1 0.2 

Independent variables 

Percentile of changes in robot adoption 700 0.50 0.29 0.0 1.0 

Robot adoption, 2005 700 2.23 10.17 0.0 10.5 

Robot adoption, 2015 700 4.98 22.54 0.0 21.1 

Δ Investment to value added ratio 700 0.02 0.69 -0.2 0.2 

Δ (natural logarithm of) value added 700 0.21 0.60 -0.7 1.1 

Percentile of changes in information technology adoption 277 0.51 0.29 0.0 1.0 

Percentile of changes in communication technology adoption 277 0.50 0.30 0.0 1.0 

IV: Reaching and handling tasks 700 0.45 0.05 0.3 0.5 

IV: Replaceable tasks 700 0.25 0.12 0.0 0.4 

Notes : A ‘ Δ’ in front of a variable refers to the change between 2005 and 2015. For variable descriptions, 

see Section 4.1 . In the columns, ‘obs’ refers to the number of observations, SD the standard deviation, p5 

the 5th percentile, and p95 the 95th percentile. 
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We match the data on robot adoption with occupational employ-

ent. 20 The nineteen sectors that are matched are 14 manufacturing in-

ustries, agriculture, mining, utilities, construction, and ‘education and

&D’. The (unweighted) average employment share of these sectors in

he total economy across the sampled countries is 46% and 39% in 2000

nd 2015, respectively. The share varies across levels of development.

t is about a quarter of the workforce in advanced countries such as

enmark, the Netherlands, and the United States throughout the sam-

le period. It is over 50% of total persons employed in industrializers

uch as the PRC, Turkey, and Poland. 

In most regression specifications, we control for changes in the in-

estment to value added ratios, and (the natural logarithm of) value

dded. 21 Although robots are a visible and much discussed form of
20 After matching the datasets, we have data for 37 countries and 19 sec- 

ors, with missing data for a few country-industry pairs. High-income coun- 

ries include the ‘old’ EU15 countries, western offshoots, and high-income East 

sian countries, namely Australia, Austria, Belgium, Canada, Germany, Den- 

ark, Spain, Finland, France, the United Kingdom, Greece, Ireland, Italy, Japan, 

outh Korea, Malta, the Netherlands, Portugal, Sweden, Chinese Taipei, and the 

nited States. EMTEs are the others, namely Brazil, the PRC, Czech Republic, 

stonia, Hungary, Indonesia, India, Lithuania, Latvia, Mexico, Poland, Romania, 

ussia, Slovakia, Slovenia, and Turkey. 
21 This data is obtained from the WIOD 2016 release ( Timmer et al. 2015 ). 

he first control variable, investment to value added ratios may be subject to 

oncerns about multi-collinearity as robots are part of physical capital invest- 

ent. We explored the share of robot investment in overall investment by using 

urnover-based prices of robots for the US provided in IFR (2012) . The number 

f robot times their unit price gives a rough approximation of nominal invest- 

ent. Our estimates suggest that the share of robot investment in total invest- 

ent is small, typically not exceeding 1 percent. The first differences of our 

ata for robot adoption and investment to value added ratios are only loosely 

orrelated, with a correlation coefficient of -0.06. 
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utomation, computers and other digital technologies impact jobs as

ell. Information and Communication Technologies (ICTs) have been

ound to be skill-biased , raising the productivity of high-skilled work-

rs and lowering demand for low-skilled workers ( Feenstra 2008 ;

ichaels et al. 2014 ). In contrast, robots are part of recent innovations

nd considered routine-biased , as they substitute for workers performing

outine-manual tasks ( Goos et al. 2014 ). These routine tasks are often

erformed by workers with a middling level of education, such as fab-

ication jobs involving repetitive production tasks ( Autor, 2015 ). We

herefore expect a direct effect of robot adoption on the demand for

outine-manual task-intensive occupations independent of ICT invest-

ent. 

To control for ICT adoption, we use data from the EU KLEMS Release

019 for gross fixed capital formation in computing and communication

quipment ( Stehrer et al. 2019 ). These ICT investments are expressed as

 share in total investment. Changes in the ICT investment share are in-

luded in the analysis, also in the form of the percentile of changes in ICT

doption (based on the employment-weighted distribution of changes).

.2. Descriptive analysis 

Table 2 shows descriptive statistics of our key dependent and ex-

lanatory variables. The top rows show changes in employment shares

or occupations by task intensity. On average, the routine (manual)

mployment share declined by 4 percentage points between 2005 and

015. This trend is observed in 35 out of 37 countries, but the decline

n the routine share differs across countries and industries. This can be

een in Appendix Figs. 1 and 2 , which depict the changes in employment

hares for our four occupational groupings by country and industry, re-

pectively. The decline in routine manual occupations is mirrored by

he rise of non-routine analytic jobs, which increased by 4 percentage



G.J. de Vries, E. Gentile and S. Miroudot et al. Labour Economics 66 (2020) 101885 

Fig. 1. Robots and the routine employment share. 

Notes : Observations are country-industry cells. The size of each circle corresponds to an industry’s 2005 within-country employment share. Vertical axis displays 

the change in the routine employment share between 2005 and 2015. Horizontal axis of panel (a) shows the percentile of changes in robot adoption (based on the 

employment-weighted distribution of changes), see Section 4.1 . Panel (b) changes in robot adoption (based on the employment-weighted distribution of changes). 

Fitted regression lines are shown. Coefficients (standard errors) of the linear fit are respectively -0.00033 (0.00010) and -0.0013 (0.0004). Sources : see Section 4.1 . 
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oints on average. 22 The comparability of the shifts in routine manual

nd non-routine analytic occupations across our sample of high-income

ountries and EMTEs makes it likely that a common set of forces con-

ributes to shared developments in labour markets. The prime suspect

s automation ( Autor, 2015 ). At the same time, variation in country-

pecific experiences underscores that no common cause will explain the

ull diversity of labour market developments across these economies. 

The average robot stock per thousand persons employed more than

oubled from 2.23 in 2005 to 4.98 in 2015. The standard deviation of

obotization reveals substantial variation in robotization across coun-

ries and industries. Most of this variation stems from cross-industry dif-

erences within countries as opposed to variation between countries. 23 

ore robots were installed in all countries, with the number of robots

er thousand persons employed surging in Germany, Japan, and South

orea (see Appendix Fig. A3 ). 24 High robot density is observed in ma-

hinery, electronics, and automotive (see Appendix Fig. A4 ). For indus-

ries that produce chemicals and metal products we also observe an in-

rease in robot density, albeit starting from low levels. 

Appendix Fig. A5 shows the number of robots per 1,000 persons

mployed by industry in the PRC and Germany for 2015. This figure

elps clarify the lower level of robots per thousand persons employed in

hina. For example, in 2015, the number of robots installed in China’s

utomotive industry was about 50,000, which compares to a slightly

ower number of around 48,500 robots in that industry for Germany.

et, in 2015 the number of persons employed in automotive is about

.8 million in China compared to 965 thousand in Germany, so a fac-

or 7 difference in the size of the workforce in that industry. Hence the
22 Changes in the shares of routine analytic and non-routine manual jobs are 

ypically smaller and we observe substantial variation across countries (see Ap- 

endix Fig. A1 ). 
23 The standard deviation of the robot stock per thousand employed between 

ountries is 8.06 in 2015. In comparison, the standard deviation of robot adop- 

ion within countries is 21.06 in 2015. Those are calculated, respectively, as 

he standard deviations of country means 𝑥 𝑐 and of their deviations 𝑥 𝑐𝑖 − 𝑥 𝑐 + 𝑥 , 
here x indicates robot adoption and 𝑥 is its global average. 

24 For Japan, reported deliveries and stocks of robots changed over time due 

o a reclassification of machines as robots ( Graetz and Michaels, 2018 ). In 

ection 5.2 we show that the main results are robust to dropping Japan from 

he sample. 
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umber of robots installed per thousand persons employed is about 7 in

hina compared to 50 in Germany. 

Table 2 also provides descriptive statistics for the instruments and

ontrol variables. The instruments replaceable tasks and reaching and han-

ling tasks are positively correlated, but different. 25 For example, the

ighest share of replaceable tasks is observed in automotive and metal

anufacturing, whereas the extent of reaching and handlings tasks is

ighest in textile and food manufacturing. 

Fig. 1 plots the change in the routine employment share against mea-

ures of increased robot use. In sub-figure (a), we plot the percentile of

he change in robot density net of country trends on the horizontal axis,

s well as the fitted regression line. The slope is negative and statistically

ignificant. The distribution of data points around the fitted line suggest

hat the relationship between the routine share and the percentile of

obot densification is well approximated by a linear functional form. In

ubfigure (b), we instead plot changes in robot density on the horizontal

xis (again net of country trends), together with the fitted line. Here a

inear functional form (though also negative and significant at conven-

ional levels) seems much less adequate, and the estimated slope appears

ensitive to several outlying observations near the top of the distribu-

ion of robot densification. Thus, following Graetz and Michaels (2018) ,

n the regression analysis we will use the percentile of changes in robot

ensification. 

Panel (a) of Fig. 2 shows a descriptive relation between robot adop-

ion and industry average changes in the routine employment share be-

ween 2005 and 2015 (see Table A1 for the industry descriptions). We

bserve a (slightly) stronger reduction in the routine share for industries

hat invested more in robots. Sectors such as paper and utilities experi-

nced a decline in the share of routine jobs with only a relatively small

ncrease in robotization. In manufacturing industries such as machinery,

lectronics, and automotive, we observe a decrease in the share of rou-

ine jobs. These industries are also among the ones with the strongest

ncrease in robot adoption. Panels (b) and (c) suggest both instruments

re good predictors, as industries with a higher share of replaceable

asks or those more intensive in reaching and handling tasks have in-
25 Note the instruments are measured by industry based on data for the US (see 

ection 4.1 ) and matched to the country-industry pairs. 
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Fig. 2. Cross-industry variation in IVs and changes in the routine employment 

share. 

Notes : On the horizontal axis is the (unweighted) average percentile of changes 

in robot adoption by industry. In panel (a), the vertical axis shows the indus- 

try (unweighted) average change in the routine employment share between 

2005 and 2015. The coefficient (standard error) of the linear fit in panel (a) 

is -0.013(0.007). The vertical axis of panels (b) and (c) show the values for 

the instruments, coefficients (standard errors) of the linear fit are respectively 

0.59(0.11) and 0.20(0.07). Sources : see Section 4.1 . 
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talled more robots compared to others. The next section formally tests

hese relationships. 

. Econometric results 

We present our main results from OLS and 2SLS regressions in

ection 5.1 . We find that robot adoption relates to a decline in the

mployment share of occupations with a high content of manual rou-

ine tasks. In Section 5.2 we present several extensions and robustness

hecks. We first document that results appear neither driven by specific

ectors or countries nor spurious industry trends. We then exploit het-

rogeneity in task intensity across (blue-collar) production workers and

nd that robot adoption relates to declining demand for occupations

hat are more intensive in routine tasks. Finally, we explore whether

lobal developments in robotization impact labour demand in EMTEs. 

.1. Main OLS and 2SLS results 

Our main regression results are summarized in Table 3 , with OLS

esults in panel A and 2SLS results in panel B. We start the analysis

y regressing the average annual percentage growth of employment on

obot adoption. Country fixed effects are included; thus, coefficients are

dentified from variation across industries. We use a conservative two-

ay clustering of standard errors at the country and industry level. Col-

mn 1 of Table 3 indicates that robot adoption is negatively correlated

ith the average growth rate of employment between 2005 and 2015.

owever, this relationship is not statistically different from zero. It sug-

ests robot adoption is not labour replacing, which was also observed

y Graetz and Michaels (2018) . Our finding indicates this result holds

n a larger country sample. 

In column (2) of Table 3 , we examine the relation between robot

doption and the share of routine jobs. We find that increased robot

se contributes to a decline in the routine employment share. To assess

he economic magnitude, consider the difference between an industry

ith a median trend in robot adoption and an industry with no robot

doption, which equals 0.5 x -0.047 = -0.02 in the OLS regression. This

ifference amounts to about 59% of the average change in the routine

mployment share (which is -0.04, see Table 2 ). While this indicates a

izeable impact of robots on occupational shifts, the R-squared of 2%

n column (2) where country fixed effects are partialled out, indicates

hat many other factors than robot adoption affect changes in the share

f routine jobs. The coefficient more than doubles in the 2SLS regres-

ion, where we use the share of replaceable tasks in industries as an

nstrument (panel B, column 2). The instrument is positively and sta-

istically significantly correlated with robot adoption in the first stage,

hich is reported in column (4) of panel B. Identification is strong, with

he Cragg-Donald Wald F statistic (268.53, assuming i.i.d. errors) and

he Kleibergen-Paap F-statistic (23.42) surpassing the 10% critical value

16.38). Under-identification is rejected at the 5% level of statistical sig-

ificance. The considerable increase in the estimated second stage co-

fficient for robot adoption, when compared to OLS results, may reflect

easurement error in our main explanatory variable: an increase in the

oise-to-signal ratio in robot adoption will bias OLS estimates towards

ero. Moreover, the increase in the coefficient in 2SLS estimates may re-

ect that our instrument for robot adoption only varies across industries

nd that global industry trends impact changes in routine employment

hares (see Section 5.2 below). Using ‘reaching and handling’ tasks as

n instrument gives similar results, although more prone to weak iden-

ification concerns (see Appendix Table A2 ). 

An advantage of our dataset is the broad country coverage, including

arious emerging market and (post-) transition economies. In column

3) of Table 3 , we differentiate the relation between robot adoption and

outine shares across high-income countries and EMTEs. 26 We do so by
26 Given the number of robots installed in the PRC, it might be less appropriate 

o classify it as an EMTE. To check for robustness of reported results, we omitted 
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Table 3 

Baseline regression results of employment growth and change in routine employment share. 

Panel A: OLS 

(1) (2) (3) (4) 

Δ Employment Δ Routineemployment share Δ Routineemployment share Percentile of changes in robot adoption 

Percentile of changes in robot 

adoption 

-0.354 -0.047 ∗∗∗ -0.055 ∗∗∗ 

(0.73) (0.02) (0.02) 

Percentile of changes in robot 

adoption x dummy EMTE 

0.040 ∗∗∗ 

(0.02) 

R 2 0.001 0.025 0.028 

Observations 700 700 700 

Number of countries 37 37 37 37 

Panel B: 2SLS (IV: Replaceable 

tasks) 

Percentile of changes in robot 

adoption 

-2.714 -0.120 ∗∗ -0.156 ∗∗ 

(3.03) (0.05) (0.06) 

Percentile of changes in robot 

adoption x dummy EMTE 

0.136 ∗∗ 

(0.06) 

Replaceable tasks 0.892 ∗∗∗ 

(0.18) 

Cragg-Donald Wald F statistic 268.53 

Kleibergen-Paap F-statistic 23.42 

Kleibergen-Paap under 

identification test ( p -value) 

0.013 

R 2 -0.052 -0.027 -0.053 

Observations 700 700 700 700 

Number of countries 37 37 37 37 

Notes : Robust standard errors in parentheses. Multi-way clustering by country and industry. The dependent variable employment growth in column (1) is the 

average annual percentage growth in employment for the period from 2005 to 2015. The dependent variable in columns (2)-(3) is the change in the routine 

employment share between 2005 and 2015. Column (4) reports the first stage for 2SLS estimation. The share of replaceable tasks in an industry is used as an 

instrument for robot adoption. Regressions include the change in the investment to value added ratio and the change in (the log of) value added between 2005 

and 2015 as control variables. Country fixed effects are included in all regressions and partialled out in the reported R 2 . 
∗ p < 0.1. 

∗∗∗ p < 0.01 
∗∗ p < 0.05 
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nteracting a dummy variable for EMTEs with robot adoption. 27 The re-

ationship between robot adoption and declining routine shares appears

o mainly occur in high-income countries: for both, the OLS and 2SLS

egressions, the negative overall coefficient estimate for robot adoption

n column (3) is almost equal in size to the positive interaction term

ith the EMTE dummy, indicating that the effect of robot adoption is

ssentially nullified in those countries. 28 Since technical constraints to

obots replacing tasks are more likely to bind for firms in high-wage

dvanced countries, improvements in robot capabilities might account

or the larger employment response in advanced countries compared to

MTEs. 

Additionally, our dataset allows us to further disaggregate routine

nd non-routine employment shares into manual and analytic task-

ntensive occupations. Results are reported in Table 4 , again with OLS

esults in panel A and 2SLS results in panel B. 29 We find that the neg-

tive relation between robot adoption and routine employment shares

s exclusively driven by manual routine jobs: the estimates in column
hina from the sample and re-classified it as a non-EMTE. This did not alter the 

esults (available upon request). 
27 In the reported 2SLS regressions, we only instrument robot adoption but not 

he interaction. We additionally estimated 2SLS regressions with the interac- 

ion instrumented, which required interaction of our instrument with an EMTE 

ummy in the first stage. Results, which are available upon request, were quan- 

itatively and qualitatively similar to those reported, but more prone to weak 

dentification concerns. 
28 OLS and 2SLS estimates of 𝛽 are not statistically significantly different from 

ero when estimating equation (1) for EMTEs only. Results are available upon 

equest. 
29 Note that first stage results for the 2SLS case are the same as in Table 3 . 
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1) of Table 4 essentially mimic those of column (2) in Table 3 , while

o relationship can be found between robot adoption and analytic rou-

ine employment shares ( Table 4 , column 2). It thus appears robots are

etter suited to substitute for routine-manual tasks due to the ability

f robots to manipulate objects. Conversely, the share of non-routine

nalytic occupations positively relates to robot adoption (column 4).

his is consistent with the intuition that non-routine analytic tasks are

omplemented by robots in production ( Autor, 2015 ). No relevant rela-

ionship is observed between robot adoption and changes in the manual

on-routine employment share (column 3). 

.2. Robustness and extensions 

We performed several robustness checks. These are summarized

n Section 5.2.1 . The other Sections focus on aspects considered rele-

ant to better understand the relation between robotization and rou-

ine employment shares and to motivate future research in this area.

ection 5.2.2 examines the relation between robot adoption across pro-

uction occupations that differ in task intensity. Section 5.2.3 examines

hether the results are driven by longer-term industry trends. Finally,

ection 5.2.4 explores the role of global industry trends in robot adop-

ion for driving country-industry changes in employment shares. 

.2.1. Robustness and heterogeneity 

We first examine regression results when adding ICT investment to

he analysis. This is because computers seem particularly suited to sub-

titute for analytic tasks and the development of computer and com-

unication equipment is not independent of robot adoption, such that

mitting ICT may bias the coefficient for robot adoption. Including vari-

bles for computer and communication investment leads to a consider-
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Table 4 

Robot adoption and changes in employment shares by task type. 

Panel A: OLS 

(1) (2) (3) (4) 

Δ Routinemanual 

employment share 

Δ Routineanalytic 

employment share 

Δ Non-routinemanual 

employment share 

Δ Non-routineanalytic 

employment share 

Percentile of changes in robot 

adoption 

-0.049 ∗∗∗ 0.002 -0.008 0.055 ∗∗∗ 

(0.02) (0.00) (0.01) (0.02) 

Δ Investment to value added ratio 0.003 ∗∗∗ 0.001 -0.001 -0.003 ∗∗∗ 

(0.00) (0.00) (0.00) (0.00) 

Δ (natural logarithm of) value 

added 

0.005 0.002 0.004 -0.009 

(0.01) (0.00) (0.00) (0.01) 

R 2 0.024 0.003 0.007 0.031 

Observations 700 700 700 700 

Number of countries 37 37 37 37 

Panel B: 2SLS (IV: Replaceable tasks) 

Percentile of changes in robot 

adoption 

-0.119 ∗∗ -0.003 -0.032 0.152 ∗∗∗ 

(0.05) (0.01) (0.02) (0.05) 

Δ Investment to value added ratio 0.004 ∗∗∗ 0.001 -0.001 -0.004 ∗∗∗ 

(0.00) (0.00) (0.00) (0.00) 

Δ (natural logarithm of) value 

added 

0.012 0.003 0.006 -0.019 ∗∗ 

(0.01) (0.00) (0.01) (0.01) 

R 2 -0.020 0.001 -0.021 -0.059 

Observations 700 700 700 700 

Number of countries 37 37 37 37 

Notes : Robust standard errors in parentheses. Multi-way clustering by country and industry. The dependent variable is the change in the respective employment 

share between 2005 and 2015. The share of replaceable tasks in an industry is used as an instrument for robot adoption. Country fixed effects are included in all 

regressions and partialled out in the reported R 2 . 
∗ p < 0.1. 

∗∗∗ p < 0.01 
∗∗ p < 0.05 
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ble decline in the sample to 277 observations because the EU KLEMS

ataset does not report ICT investment by industry for many EMTEs.

he estimated coefficient for the relation between robot adoption and

outine employment shares is smaller but remains negative and statisti-

ally significant in the OLS and IV regressions (see column 1 of Appendix

able A3 ). 30 

To avoid results being driven by certain countries, we inspect the pat-

ern of OLS residuals (depicted in Appendix Fig. A6 ). Furthermore, we

ook at the distribution of country-specific parameter estimates, which

e obtain by interacting robot adoption with a matrix of country dummy

ariables in our main OLS specification (see Appendix Fig. A7 ). There is

 cluster of high fitted values for Ireland (Appendix Fig. A6 , panel A) and

wo residuals from Romania and Sweden obtain a relatively high lever-

ge and are potential outliers (Appendix Fig. A6 , panel B). Moreover, the

ountry-specific estimation coefficients in Appendix Fig. A7 suggest co-

fficient estimates for Ireland, Lithuania, and Latvia deviate from other

ountries. We hence exclude these 5 countries as well as Portugal, which

aw somewhat different employment dynamics than the rest of our sam-

le, according to our descriptive analysis (cf. Appendix Fig. A1 ). Results

re reported in column (2) of Appendix Table A3 . Dropping these coun-

ries does not qualitatively affect our main result. 31 

Similarly, we also compute industry-specific coefficients for the re-

ationship between robot adoption and the share of routine jobs. Ap-

endix Fig. A8 suggests that the electricity, gas, and water supply sector
30 Moreover, the change in the parameter estimate appears to originate from a 

ample composition effect and not from omitted ICT variables: re-estimating the 

aseline model with the 277 observations for which ICT data is available pro- 

uces the same coefficient for robot adoption as in the presence of ICT variables: 

0.033 ∗ ∗ ∗ . 
31 We also excluded several of those countries/country groups separately, with 

qually robust results. This also applies to excluding Japan from the analysis, 

hich was dropped from the sample by Graetz and Michaels (2018) . 

t  

a

l

n

t

f

ould be an outlier that potentially drives the overall result, together

ith the education and R&D sector, which saw different routine employ-

ent trends according to our descriptive analysis. We thus re-estimate

ur baseline regressions and sequentially omit these sectors. Columns

3) and (4) of Appendix Table A3 suggest our results are not driven by

hese sectors, although omitting the education and R&D sector in 2SLS

stimation pushes statistical significance of the robot adoption parame-

er slightly beyond the critical 10% level (for the null hypothesis of no

elationship). To check whether countries that account for the majority

f robots installed are driving our estimates, we also excluded Japan,

outh Korea, Germany, the PRC and the US from our estimates, leaving

he baseline estimate for robotization unaffected. For the same rationale,

e also excluded the high robot-adopting automotive and electronic in-

ustries (columns (5) and (6) of Appendix Table A3 respectively). All

arameter estimates for robot adoption where negative and statistically

ifferent from 0 and t-tests do not allow rejecting the null hypothesis

f equality of these parameter estimates with the baseline result (at the

0% level of statistical significance). 

We also investigated whether a sample split at the median (0.5) of

he percentile change in robot adoption affects our results. The results

ndicate that the parameter estimate for the slower adopters ( < 0.5) are

onsiderably higher but estimated with low precision, so that they are

ot statistically different from 0. Neither of the estimated OLS or IV

arameters for the sample split are statistically speaking different from

hose in the baseline result of column (2) in table 3 , in line with an

pproximately linear relationship suggested by panel (a) in Fig. 1. 32 
32 We also examined results when clustering standard errors at the country 

evel and not clustering at all. The alternative treatment of standard errors does 

ot affect the statistical significance of the relation between robot adoption and 

he share of routine jobs in the OLS regressions and the coefficient ( 𝛽) is different 

rom zero at the 1% level of statistical significance in the 2SLS regressions. 
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Table 5 

Robot adoption and changes in the employment share of production workers. 

Panel A: OLS 

(1) (2) (3) (4) (5) 

No weight RII weight (global average) RII weight (U.S.) RII weight (Germany) RTI weight 

Percentile of changes in robot adoption -0.031 ∗ -0.066 ∗∗∗ -0.065 ∗∗∗ -0.058 ∗∗∗ -0.103 

(0.02) (0.02) (0.02) (0.02) (0.08) 

R 2 0.016 0.036 0.054 0.035 0.019 

Observations 450 450 450 450 450 

Panel B: 2SLS (IV: Replaceable tasks) 

Percentile of changes in robot adoption -0.083 ∗ -0.122 ∗∗ -0.143 ∗∗∗ -0.113 ∗∗ -0.318 ∗ 

(0.04) (0.06) (0.05) (0.06) (0.19) 

R 2 -0.018 0.013 -0.021 0.006 -0.033 

Observations 450 450 450 450 450 

Notes : Robust standard errors in parentheses. Multi-way clustering by country and industry. Dependent variable is the change in the employment share of production 

workers between 2005 and 2015, with weights indicated in the column header. In Panel B, the share of replaceable tasks in an industry is used as an instrument 

for robot adoption. Country fixed effects are included in all regressions and partialled out in the reported R 2 . 
∗∗∗ p < 0.01 
∗∗ p < 0.05 
∗ p < 0.1. 
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.2.2. Robot adoption and production workers 

In Table 1 , production workers are categorized as having a high con-

ent of routine-manual tasks. Yet, production workers are typically la-

elled blue-collar workers. Hence, the relation between robots and a

eclining employment share of routine manual jobs could reflect a sub-

titution of robots for blue collar production workers, instead of a sub-

titution for routine tasks. 

It is hard to rule out such an alternative interpretation. Yet, for 24

ountries in our sample we are able to distinguish seven 2-digit ISCO

ccupations that together comprise the occupational grouping labelled

production workers’ (cf. Table 1 ). 33 The routine task-intensity for each

f these 2-digit occupations is provided by Autor et al. (2003) and, us-

ng an alternative approach, by Marcolin et al. (2019) . We use these to

reate a weighted average of the change in the employment share of

roduction workers. The weights we use are the routine intensity index

RII) from Marcolin et al. (2019) and the routine task intensity (RTI)

auged by Autor et al. (2003) . The task-intensity by occupation is re-

orted in Appendix Table A4 . Clearly, the seven occupations labelled

roduction workers are heterogeneous in the content of routine tasks. 

The first column of Table 5 regresses the change in the employment

hare of production workers on robot adoption. Results indicate a signif-

cant negative relation between robot adoption and changes in the share

f (routine manual task-intensive) production jobs. Subsequent columns

xamine the same relation, but here changes in the share of production

obs are calculated as a routine task-intensity weighted average change.

ccupations that have a higher content of routine tasks receive a greater

eight in this approach. 34 

Weighting by routine intensity strengthens the negative association

etween robotization and changes in the share of production jobs: the

esulting parameter estimates in columns (2)-(5) are larger compared

o column (1). This result is observed if we use as weights the global

verage routine intensity (RII) reported by Marcolin et al. (2019) , see

olumn (2), or the RII for the US or Germany (columns (3) and (4), re-

pectively). It is also observed if we weight occupations using the RTI
33 The seven ISCO 2-digit occupations that can be distinguished are ISCO 88 

odes 71, 72, 73, 74, 81, 82, and 93. The countries for which we are able to 

ake this split are Austria, Belgium, Czech Republic, Denmark, Estonia, Fin- 

and, France, Germany, Greece, Hungary, Ireland, Italy, Lithuania, Latvia, Malta, 

he Netherlands, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, 

urkey, and the United Kingdom. 
34 The task-intensity measures are Pearson-transformed, i.e. centred at 0 with 

 standard deviation of 1. We added + 1 to the measure. Hence, an occupation 

ith mean routine intensity gets a weight of 1, a below-average routine intensity 

ccupation a lower weight, and an above-average routine intensity occupation 

 weight above 1 (see Appendix Table A4 ). 

c  
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n  

p  
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m
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d

rom Autor et al. (2003) , see column (5), although the parameter is es-

imated with less statistical precision in the OLS and 2SLS regressions.

verall, these results provide additional evidence that robot adoption

s related to a decline in the share of occupations that have a higher

ontent of routine tasks. 

.2.3. Controlling for long-term industry trends 

A remaining concern is that there could be a long-run decline in the

hare of routine tasks done by workers, which is more pronounced in

ndustries investing more in robots yet not driven by robotization per

e. A common way to examine this concern is to regress employment

utcomes from a pre-period on the period during which robots were

dopted. 

Ideally, we thus relate pre-period employment outcomes on the cur-

ent rise of robots. However, we are constrained by cross-country occu-

ations data which are available from 2000 onwards. By 2000, robots

ere already being installed ( Graetz and Michaels, 2018 ). Still, descrip-

ive statistics in Table 2 for the number of robots per thousand persons

mployed in 2005 and 2015 suggest they became ubiquitous from the

id-2000s onwards. 

In column (1) of Table 6 we therefore regress the change in the rou-

ine employment share between 2000 and 2005 on our post-2005 mea-

ure of robot adoption. We indeed find a relationship, although the coef-

cient is smaller and less precisely estimated compared to our baseline

esults (cf. column (2) of Table 3 ). 35 Pre-trend correlation is a necessary

ondition for unobserved sector heterogeneity, but it is not a sufficient

ondition to render identification invalid. This is partly because the pre-

rend does not pre-date the rise of robots. Yet, to control for longer-term

ndustry trends, we provide two additional estimation approaches: ex-

licitly accounting for pre-trends by including the change in the routine

mployment share between 2000 and 2005 as a lagged dependent vari-

ble and including industry fixed effects. 

Columns (2) and (3) of Table 6 add pre-trends to the regressions on

hanges in the routine employment share and the routine manual em-

loyment share, respectively (cf. column (2) of Table 3 and column (1)

f Table 4 ). We observe a positive autocorrelation in employment dy-

amics. Yet, robot adoption adds additional information beyond those

re-trends as the coefficient remains statistically significant. The esti-
35 Note that the pre-trends in employment share changes cover a 5 year pe- 

iod. Estimated coefficients and standard errors thus have to be approximately 

ultiplied by a factor 2 to make them comparable with our main results for the 

0 year period from 2005 to 2015. When the pre-trends are included as lagged 

ependent variables (columns 2 and 3 of Table 6 ), they accordingly have to be 

ivided by 2. 
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Table 6 

Accounting for long-term industry trends. 

Panel A: OLS 

(1) (2) (3) (4) (5) 

Δ Routineemployment 

share2000-2005 

Δ Routineemployment 

share 

Δ Routinemanual 

employment share 

Δ Routineemployment 

share 

Δ Routinemanual 

employment share 

Percentile of changes in 

robot adoption 

-0.020 ∗∗ -0.044 ∗∗∗ -0.046 ∗∗∗ -0.016 ∗∗∗ -0.026 ∗∗∗ 

(0.01) (0.01) (0.01) (0.00) (0.01) 

Change in dependent 

variable, 2000-2005 

0.174 ∗ 0.147 ∗ 

(0.10) (0.08) 

Industry Fixed Effects No No No Yes Yes 

R 2 0.014 0.035 0.030 0.007 0.007 

Observations 700 700 700 700 700 

Panel B: 2SLS (IV: 

Replaceable tasks) 

Percentile of changes in 

robot adoption 

-0.053 ∗∗ -0.113 ∗∗ -0.114 ∗∗ 

(0.02) (0.05) (0.05) 

Change in dependent 

variable, 2000-2005 

0.133 0.109 

(0.09) (0.08) 

Industry Fixed Effects No No No 

R 2 -0.018 -0.012 -0.010 

Observations 700 700 700 

Notes : Robust standard errors in parentheses. Multi-way clustering by country and industry. The dependent variable is the change in the respective employment 

share over the respective period. The share of replaceable tasks in an industry is used as an instrument for robot adoption. Regressions include the change in the 

investment to value added ratio and the change in (the log of) value added between 2005 and 2015 as control variables. Country fixed effects are included in all 

regressions and partialled out in the reported R 2 . 
∗∗∗ p < 0.01 
∗∗ p < 0.05 
∗ p < 0.1. 
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ated coefficient is comparable to the baseline results. Perhaps the most

onvincing evidence that the negative relationship between routine em-

loyment shares and robot adoption is not exclusively driven by spuri-

us industry dynamics can be found in columns (4) and (5) of Table 6 ,

here we add industry fixed effects to our OLS regressions. 36 This is

 restrictive model that assumes industry-specific time trends in lev-

ls and thus not only accounts for heterogeneous industry employment

rends but also removes a considerable degree of variation in the data

hat may be relevant for identification. Yet, the negative association be-

ween robotization and routine employment trends is still observed and

tatistically significant. 

.2.4. Global developments in robot adoption 

As discussed in Section 2 , advances in the technical ability of robots

ight relate to the “reshoring ” of jobs to advanced countries. For ex-

mple, Faber (2018) observes a decrease in labour demand in Mexico

ssociated with robot adoption in the United States. We explore this re-

ation in a cross-country context using two measures of robot adoption

hat vary across industries but not across countries. First, we take global

verages, defined as the cross-country mean of the percentile change in

obot adoption by industry. This reflects the idea that in an intercon-

ected world those industries with higher robot adoption will see faster

eclines in routine employment shares regardless of the location of pro-

uction. Second, we use robot adoption of U.S. industries to represent

lobal industry trends. 

Results are reported in Table 7 . In columns (1) and (2) the global av-

rages of industry-specific robot adoption is used. The regressions sug-

est a statistically significant and negative relation between changes in

he routine employment share and global trends in robot adoption. 37 In-

erestingly, the positive interaction between robot adoption and EMTEs
36 We cannot estimate the model with industry fixed effects using 2SLS because 

he instrument only varies across industries. 
37 Using measures of robot adoption that vary across industries but not across 

ountries, we also do not find a statistical significant association between robot 

a

c

c

hown in column (2) no longer makes up for the negative overall robot

doption parameter: the hypothesis that the sum of both parameters

dds up to 0 can be rejected at the 5% level of statistical significance.

his suggests that global developments in robot adoption impact labour

arkets in EMTEs. Note, however, this is not observed if we use robot

doption in U.S. industries to characterize global trends (see column

4)). 38 Nevertheless, these exploratory regressions provide suggestive

vidence for the potential relevance of global production networks and

ssociated job reshoring patterns due to automation, which remains an

nteresting area for further research. 

. Concluding remarks 

We study the relation between industrial robots and occupational

hifts by task content. Using a panel of 19 industries in 37 high-income

nd EMTEs from 2005-2015, we find that increased use of robots is as-

ociated with positive changes in the employment share of non-routine

nalytic jobs and negative changes in the share of routine manual jobs.

he patterns that we document are robust to instrumental variable es-

imation and the inclusion of various control variables, but they differ

cross levels of economic development: we observe a significant rela-

ion for high-income countries, but not in EMTEs. Finally, we do not

nd a significant relation between industrial robot adoption and aggre-

ate employment growth. This suggests that industrial robots did not

eplace jobs, but they did impact task demand and thus had disruptive

ffects on employment. 

Our analysis covered industrial robots, but much of the recent

obotic developments have been taking place in services, such as the

mergence of medical robots, logistics handling robots, and delivery by
doption and the average annual percentage growth in employment in specifi- 

ations with and without the interaction with a dummy for EMTEs. 
38 It is also not observed if we use robot adoption in German industries to 

haracterize global trends. 
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Table 7 

Global industry trends in robot adoption. 

Panel A: OLS 

(1) (2) (3) (4) 

Robot measure: Global average Global average U.S. U.S. 

Δ Routineemployment share Δ Routineemployment share Δ Routineemployment share Δ Routineemployment share 

Alternative measure robot adoption -0.084 ∗∗∗ -0.101 ∗∗∗ -0.045 ∗∗∗ -0.052 ∗∗∗ 

(0.03) (0.04) (0.01) (0.02) 

Alternative measure robot adoption x 

dummy EMTE 

0.054 ∗∗∗ 0.052 ∗∗∗ 

(0.02) (0.02) 

R 2 0.034 0.039 0.039 0.043 

Observations 700 700 700 700 

Panel B: 2SLS (IV: Replaceable tasks) 

Alternative measure robot adoption -0.128 ∗∗∗ -0.152 ∗∗∗ -0.067 ∗∗∗ -0.080 ∗∗∗ 

(0.05) (0.06) (0.02) (0.03) 

Alternative measure robot adoption x 

dummy EMTE 

0.089 ∗∗ 0.086 ∗∗ 

(0.04) (0.03) 

R 2 0.026 0.030 0.030 0.033 

Observations 700 700 700 700 

Notes : Robust standard errors in parentheses. Multi-way clustering by country and industry. The dependent variable is the change in the routine employment 

share between 2005 and 2015. Column headers indicate which type of global measure has been used to calculate industry-specific robot adoption. The share of 

replaceable tasks in an industry is used as an instrument for robot adoption. Regressions include the change in the investment to value added ratio and the change 

in (the log of) value added between 2005 and 2015 as control variables. Country fixed effects are included in all regressions and partialled out in the reported R 2 . 
∗ p < 0.1. 

∗∗∗ p < 0.01 
∗∗ p < 0.05 
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eans of drones. It is therefore likely that robots will continue to disrupt

abour markets and result in reallocation dynamics. Studying and under-

tanding the socio-economic consequences of these disruptions will be

mportant (see e.g. Dauth et al. 2019 ). Retraining and reskilling of work-

rs seems inevitable, which should spur a major rethinking about educa-

ional goals, lifelong learning, and developing the right skills ( Kim and

ark, 2020 ). 
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ppendix 
Fig. A1. Changes in employment shares by country 

and task type between 2005 and 2015. 

Notes : change in employment shares between 2005 

and 2015. For aggregation, industries included in the 

sample are weighted using their 2005 employment 

share within the sample for each country. Agriculture 

is omitted in the calculation for Ireland, which reports 

a sudden swing in the routine manual employment 

share (see Section 5.2.1 for robustness check excluding 

Ireland). Source: updated occupations database from 

Reijnders and de Vries (2018) by Buckley et al. (2020) . 
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Fig. A2. Changes in employment shares by in- 

dustry and task type between 2005 and 2015. 

Notes : change in employment shares by in- 

dustry between 2005 and 2015. Unweighted 

average changes. Source: updated occu- 

pations database from Reijnders and de 

Vries (2018) by Buckley et al. (2020) . 

Fig. A3. Robotization by country in 2005 and 2015. 

Notes : robot stock per thousand employees by country 

in 2005 (squares) and 2015 (triangles). Sources: robot 

stock from IFR and employment from Reijnders and de 

Vries (2018) updated by Buckley et al. (2020) . 
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Fig. A4. Robotization by industry in 2005 and 2015. 

Notes : robot stock per thousand persons employed by indus- 

try in 2005 (squares) and 2015 (triangles). Sources: robot 

stock from IFR and employment from Reijnders and de 

Vries (2018) updated by Buckley et al. (2020) . 

Fig. A5. Robotization by industry in the PRC and Germany, 

2015. 

Notes : robot stock per thousand persons employed by industry. 

Sources: robot stock from IFR and employment from Reijnders 

and de Vries (2018) updated by Buckley et al. (2020) . 

Table A1 

Industry codes. 

ISIC rev 3.1 code Short description Long description 

AtB Agriculture Agriculture, hunting, forestry and fishing 

15t16 Food products Food, beverages and tobacco 

17t18 Textiles Textiles and textile 

19 Leather Leather, leather and footwear 

20 Wood products Wood and products of wood and cork 

21t22 Paper Pulp, paper, printing and publishing 

23 Petroleum Coke, refined petroleum and nuclear fuel 

24 Chemical Chemicals and chemical 

25 Plastic Rubber and plastics 

26 Non-metallic mineral Other non-metallic mineral 

27t28 Metal Basic metals and fabricated metal 

29 Machinery Machinery, not elsewhere classified (n.e.c.) 

30t33 Electronics Electrical and optical equipment 

34t35 Automotive Transport equipment 

36t37 Other Manufacturing n.e.c.; recycling 

C Mining Mining and quarrying 

E Utilities Electricity, gas and water supply 

F Construction Construction 

M Education, and R&D Education, and R&D 
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Fig. A6. Residual patterns for main OLS specification. 

Notes : Panel a plots the OLS residuals (deviation of predicted from actual value, vertical axis) against the fitted values from the OLS model (horizontal axis). Panel b 

plots the leverage (influence) every observation gets in the OLS regression, a measure of distance from the mean in the explanatory variables (vertical axis), against 

normalized squared residuals (horizontal axis). All values are based on column (2) in panel A of Table 3 . 

Fig. A7. Country-specific OLS coefficients. 

Notes : Fig 6 displays country-specific coefficients for an OLS regression model where we augment the specification in column (2) of Table 3 (panel A) with an 

interaction of robot adoption with country dummy variables. The distribution of those country-specific interactions with robot adoption is depicted in Figure 6(a) 

using a histogram and a kernel density estimator. Figure 6(b) displays the estimated coefficients by country, including their 95% confidence interval. 
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Fig. A8. Industry-specific OLS coefficients. 

Notes : Figure displays industry-specific coef- 

ficients for a regression model where we 

augment the specification in column (2) of 

Table 3 (panel A) with an interaction of robot 

adoption with industry dummy variables. The 

estimated coefficients by industry are depicted 

together with their 95% confidence interval. 

Table A2 

2SLS results for reaching and handling. 

(1) (2) (3) (4) 

Δ Employment 

Δ Routineemployment 

share 

Δ Routineemployment 

share 

Percentile of changes 

in robot adoption 

Percentile of changes in robot 

adoption 

-1.586 -0.134 ∗ -0.169 

(3.81) (0.08) (0.11) 

Percentile of changes in robot 

adoption x dummy EMTE 

0.149 

(0.10) 

Reaching and handling tasks 1.438 ∗∗∗ 

(0.43) 

Cragg-Donald Wald F statistic 129.47 

Kleibergen-Paap F-statistic 11.44 

Kleibergen-Paap under 

identification test ( p -value) 

0.025 

R 2 -0.013 -0.047 -0.075 

Observations 700 700 700 700 

Number of countries 37 37 37 37 

Notes : Robust standard errors in parentheses. Multi-way clustering by country and industry. The dependent variable employment growth in column (1) is the 

average annual growth in employment for the period from 2005 to 2015. The dependent variable in columns (2)-(3) is the change in the routine employment 

share between 2005 and 2015. Column (4) reports the first stage for 2SLS estimation. Reaching and handling tasks are used as an instrument for robot adoption. 

Regressions include the change in the investment to value added ratio and the change in (the log of) value added between 2005 and 2015 as control variables. 

Country fixed effects are included in all regressions and partialled out in the reported R 2 . 
∗∗∗ p < 0.01. 
∗∗ p < 0.05. 
∗ p < 0.1. 
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Table A3 

Robustness analysis. 

Panel A: OLS 

(1) (2) (3) (4) (5) (6) (7) (8) 

ICT investment 

included 

6 countries 

omitted 

Sector ‘utilities’ 

omitted 

Sector 

‘education and 

R&D’ omitted 

Excluding 

several major 

robot-adopting 

countries 

Excluding 

several 

high-adopting 

industries 

Percentile of 

changes in robot 

adoption < 0.5 

Percentile of 

changes in robot 

adoption > 0.5 

Perc. of Δ
robot adoption 

-0.033 ∗∗ -0.039 ∗∗∗ -0.052 ∗∗∗ -0.040 ∗∗ -0.047 ∗∗∗ -0.038 ∗∗ -0.158 -0.066 ∗ 

(0.01) (0.01) (0.01) (0.02) (0.02) (0.02) (0.10) (0.04) 

Perc. of Δ IT 

adoption 

0.024 

(0.03) 

Perc. of Δ CT 

adoption 

-0.009 

(0.03) 

R 2 0.044 0.044 0.032 0.019 0.021 0.012 0.011 0.029 

Observations 277 588 663 663 605 626 349 351 

Panel B: 2SLS (IV: Replaceable tasks) 

Perc. of Δ
robot adoption 

-0.085 ∗∗ -0.109 ∗∗∗ -0.134 ∗∗∗ -0.106 -0.130 ∗∗ -0.135 ∗∗ -1.367 -0.060 

(0.04) (0.04) (0.05) (0.07) (0.05) (0.06) (0.84) (0.21) 

Perc. of Δ IT 

adoption 

0.035 ∗ 

(0.02) 

Perc. of Δ CT 

adoption 

-0.021 

(0.03) 

R 2 -0.015 -0.065 -0.038 -0.022 -0.032 -0.052 -0.448 0.029 

Observations 277 588 663 663 605 626 349 351 

Notes : See Section 5.2.1 . Regressions for the percentile of changes in robot adoption (Perc. of Δ robot adoption) on changes in the routine employment share between 

2005 and 2015. Robust standard errors in parentheses. Multi-way clustering by country and industry. In column (1) the percentile of changes in information 

technology adoption (Perc. of Δ IT adoption) and the percentile of changes in communication technology adoption (Perc. of Δ CT adoption) are included as 

explanatory variables. Panel B uses the share of replaceable tasks in an industry as an instrument for robot adoption. Regressions include the change in the 

investment to value added ratio and the change in (the log of) value added between 2005 and 2015 as control variables. Country fixed effects are included in all 

regressions and partialled out in the reported R 2 . 
∗∗∗ p < 0.01. 
∗∗ p < 0.05. 
∗ p < 0.1. 

Table A4 

Routine task-intensity of occupations grouped as ‘production workers’. 

ISCO88 code Description occupation RII (Global average) RII (U.S.) RII (Germany) RTI 

71 Extraction and building trades workers 1.031 1.209 0.955 0.815 

72 Metal, machinery and related trade work 1.269 1.209 0.955 1.457 

73 Precision, handicraft, craft printing and related trade workers 0.952 1.598 0.477 2.589 

74 Other craft and related trade workers 0.810 0.626 0.477 2.238 

81 Stationary plant and related operators 2.930 2.181 3.342 1.323 

82 Machine operators and assemblers 2.480 3.541 2.865 1.493 

93 Labourers in mining, construction, manufacturing and transport 2.886 2.375 3.342 1.449 

Notes : The routine intensity index (RII) is from Marcolin et al. (2019) and the routine task intensity (RTI) from Autor et al. (2003) . The measures are Pearson- 

transformed, i.e. centred at 0 with a standard deviation of 1. We added + 1 to the measure. Hence, an occupation with mean routine intensity gets a weight of 1, a 

below-average routine intensity occupation a lower weight, and an above-average routine intensity occupation a weight above 1. 
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