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Near-term warming rates affect how rapidly societies and eco-
systems must adapt to the worst impacts of climate change. 
Recent decades have seen high rates of warming in global 

mean surface air temperature (GSAT); the maximum warming 
trend for 20-year segments of the observation-based record since 
pre-industrial times is 0.27 °C per decade, which occurred in the 
past few decades with the exact timing dependent on the dataset 
used (Supplementary Fig. 1). It is clear that to stabilize climate in 
the long term, global net-zero GHG emissions must be achieved1; 
however, it is less clear when the benefits of mitigation applied now 
will become evident2–6.

Here, we investigate the effect of different levels of mitigation in 
future emission scenarios on surface warming rates in the next 20 
years (2021–2040), a key period for policymakers at the forefront of 
climate change adaptation. For example, crop breeding is unlikely 
to keep pace with climate impacts on agriculture over this period 
under current rates of warming7. The next 20 years is also a typical 
time horizon for initial planning to operation of large-scale struc-
tural responses to support climate change adaptation, such as the 
design and implementation of flood defences8.

The consensus is that differences in GSAT between high and 
low emission pathways emerge only after the 2050s, with changes 
not being detectable beforehand2–6. The long atmospheric lifetime 
of CO2 means that substantial emission reductions are needed to 
alter the upward trend in atmospheric concentration and effective 
radiative forcing (ERF)9, making it difficult for society to notice 
the immediate benefits of mitigation efforts. The Paris Agreement 
long-term targets are concerned with addressing the anthropogenic 
warming contribution10,11, but the temperature changes that society 
will experience in the near term will come from a combination of a 
forced response to radiative forcings and internal climate variabil-
ity12,13. On decadal timescales, internal variability can overwhelm 
the forced climate response, even for spatially averaged quantities 
such as global temperature4, having profound implications for the 
public understanding of climate change. For example, the period 
of relatively slow surface warming between 1998 and 2012, which 

was partly associated with internal climate variability14, was widely 
misreported, leading to doubt in the public mind about how well 
anthropogenic climate change is understood15. It is therefore impor-
tant to communicate to what extent strong mitigation efforts will 
offer benefits in the near term as well as in the long term, and to 
what extent those benefits may be masked on shorter timescales by 
internal variability.

Here, we combine two approaches (Methods) to assess whether 
mitigation has detectable benefits for near-term warming rates. 
The first approach uses projections from the latest Coupled Model 
Intercomparison Project Phase 6 (CMIP6) models, driven by 
Shared Socioeconomic Pathway (SSP16) scenarios and constrained 
according to their representation of recent observed warming 
rates17. The second approach uses a simple climate model emula-
tor (the Finite amplitude Impulse Response (FaIR) model18), with 
added observation-based estimates of internal variability19, also run 
under SSP scenarios as well as a scenario consistent with the cur-
rent and projected pledges as of 2019 in the nationally determined 
contributions (NDCs) under the Paris Agreement20–22. Simple cli-
mate models such as FaIR are designed to emulate the behaviour 
of more complex climate models in a computationally inexpensive 
way, by using simplified representations of the physical relation-
ships between emissions, atmospheric concentrations of GHGs and 
other climate forcers, radiative forcing, and temperature change. 
The combination of these two approaches is advantageous because 
the CMIP6 models, while comprehensive, do not necessarily accu-
rately represent observed internal variability, and CMIP6 was not 
designed to fully sample the range of parameter uncertainties that 
affect temperature projections. Since FaIR is inexpensive to run, 
it can be used to more broadly sample uncertainty in temperature 
projections than individual complex climate models (Methods).

We focus on strong mitigation pathways in line with the Paris 
Agreement 1.5 °C and 2 °C long-term temperature targets (SSP1-
1.9 and SSP1-2.6, respectively) and include the NDC-like scenario 
to consider a less ambitious and more plausible mitigation path-
way23. These are compared with baseline no mitigation pathways  
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(SSP3-7.0 and SSP5-8.5). SSP5-8.5 is a highly unlikely worst-case no 
mitigation pathway since, for example, it assumes a fivefold increase 
in coal use by the late twenty-first century23. SSP3-7.0 represents an 
average no mitigation pathway23; as such, we focus on this pathway 
as a baseline.

We first ask whether over the next 20 years, mitigation (relative 
to a baseline of no mitigation) will reduce (1) the risk of experienc-
ing unprecedented warming rates (exceeding the highest warming 
rate observed to date) and (2) the potential magnitude of extreme 
warming rates (that is, low-probability 20-year trends in the upper 
fifth percentile), which could lead to the failure of adaptation plans.

Both the CMIP6 and FaIR simulations show a clear benefit of 
strong mitigation in terms of decreasing near-term warming rates 
(Fig. 1a). The following results are quoted from the FaIR projections 

accounting for internal variability, but note that the distributions of 
trends for the constrained CMIP6 models are in good agreement 
with FaIR (Fig. 1a). In the strong mitigation scenario consistent with 
warming of below 2.0 °C by 2100 (SSP1-2.6; blue boxes), the median 
warming rate is almost half that in the worst-case no mitigation sce-
nario (SSP5-8.5; brown boxes) and two-thirds that in the average no 
mitigation scenario (SSP3-7.0; orange boxes). Under the even stron-
ger mitigation scenario consistent with keeping long-term warm-
ing below 1.5 °C (SSP1-1.9; green box), the median warming rate is 
almost one-third of that in the worst-case no mitigation scenario and 
just over half that in the average no mitigation scenario. Even under 
less ambitious mitigation consistent with the current and projected 
NDCs (grey box), there is still a reduction in the median warming 
rate by around one-third compared with SSP5-8.5 and one-quarter 
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Fig. 1 | Near-term (2021–2040) gSAT trends and anomalies relative to the near-present-day (1995–2014) baseline. a, Trends in °C per decade. b, 
Anomalies in °C. The data are shown for pathways consistent with current and projected NDCs (grey box); highest-ambition mitigation in line with the 
Paris Agreement target to pursue efforts to keep warming to below 1.5 °C (SSP1-1.9, green box); strong mitigation in line with the Paris Agreement target to 
keep warming below 2 °C (SSP1-2.6, blue boxes); average no mitigation baseline scenario (SSP3-7.0, orange boxes); and unlikely worst-case no mitigation 
scenario (SSP5-8.5, brown boxes). The lighter shading shows the CMIP6 projections with a historical constraint applied, and the darker shading shows 
the FaIR projections plus an observation-based estimate of internal variability (IV) (Methods). The boxes denote the 17–83% range (66% probability), 
and the whiskers denote the 5–95% range (90% probability) of the projections. The maximum and minimum values are shown as crosses. The maximum 
trend for 20-year segments of the observation-based record is 0.27 °C per decade (the red ticks on the y axes) on the basis of the mean of four datasets, 
with a range across datasets of 0.25–0.29 °C per decade (grey horizontal bar; 0.25 °C per decade for 2000–2019 in GISTEMPv4, 0.26 °C per decade for 
1984–2003 in CWv2 and BE, and 0.29 °C per decade for 1984–2003 in HadCRUT4.6; Supplementary Fig. 1). To compare with the model-simulated GSAT 
projections, the observation data have been converted from global blended surface temperature (GBST) to GSAT using a scaling factor of 1.087 for BE, 
CWv2 and GISTEMPv4, and 1.19 for HadCRUT4.6 (Methods).
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compared with SSP3-7.0. The median ERF trend in FaIR over this 
period differs by 0.63 W m−2 per decade between SSP1-1.9 and 
SSP5-8.5 (Supplementary Table 1), which comes mainly from car-
bon dioxide (0.42 W m−2 per decade), methane (0.15 W m−2 per 
decade), tropospheric ozone (0.13 W m−2 per decade) and other 
well-mixed GHGs (0.05 W m−2 per decade), with a slight offset from 
anthropogenic aerosols (−0.16 W m−2 per decade). The difference 
in the near-term total ERF trend is 0.29 W m−2 per decade between 
SSP1-2.6 and SSP3-7.0 (Supplementary Table 1). Over the next 20 
years, the difference in median ERF trends between the strong miti-
gation and no mitigation SSP scenarios are therefore comparable to, 
or larger than, the total ERF trend over the recent past (1995–2014; 
0.40 W m−2 per decade; Supplementary Table 1).

Comparing the distributions of projected warming rates with 
the maximum trend for 20-year segments of the observation-based 
record since the pre-industrial era (the red ticks on the y axes, Fig. 
1a), we find that strong mitigation has a discernible effect on the 
risk of experiencing stronger warming than observed in the past, 
even after accounting for internal variability. Under SSP1-1.9 
(SSP1-2.6), there is only a 4% (14%) probability of the warming 
rate in the next 20 years exceeding the maximum observed trend, 
while for SSP3-7.0 (SSP5-8.5), this increases considerably to a 54% 
(75%) probability. Less ambitious mitigation, in line with the cur-
rent and projected NDCs, results in a higher probability (21%) of 
unprecedented near-term warming than for SSP1-1.9 or SSP1-2.6. 
Pursuing rapid, stringent mitigation therefore substantially reduces 
the risk of experiencing unprecedented warming rates over the 
next 20 years, giving societies and ecosystems a greater chance to 
adapt to and avoid the worst impacts of climate change. Indeed, for 
warming rates of 0.3 °C per decade, which is close to the threshold 
for unprecedented warming rates, it has been estimated that only 
30% of all climate-change-impacted ecosystems and only 17% of 
impacted forests can adapt24.

Note that very high near-term warming rates, which are substan-
tially larger than the maximum observed historical 20-year trend, 
are still possible in all scenarios considered. However, a key point 
for policymakers to note is that strong mitigation greatly reduces 
the extremity of these low-probability high-impact cases, reducing 
the risk of ecosystems declining and adaptation plans failing. Under 
SSP5-8.5 and SSP3-7.0, the upper 5% of trends are 0.50–0.83 °C per 
decade and 0.43–0.79 °C per decade, respectively, while this extreme 
range is 0.32–0.50 °C per decade for SSP1-2.6 and 0.26–0.43 °C 
per decade for SSP1-1.9 (Fig. 1a; FaIR boxes). For warming rates 
over 0.4 °C per decade, evidence suggests that all ecosystems will 
decline, as they will not be able to adapt rapidly enough25. These 
extremes are caused by a combination of relatively high equilibrium 
climate sensitivity (ECS), high transient climate response (TCR), 
high ERF trends and high positive internal variability. Very low 
near-term warming rates are also possible in all scenarios consid-
ered. However, only under mitigation would it be possible (but very 
unlikely) to observe a cooling trend over the next 20 years. Only 
2% of trends show near-term cooling in SSP1-1.9, where the mini-
mum trend is −0.13 °C per decade. Maher et al.5 found that cooling 
trends could be observed in the near term even under a worse-case 
emissions scenario, when using a shorter 15-year time horizon and 
considering trends at individual locations rather than the global 
average trend.

We now ask what the probability is, over the next 20 years, of 
the warming trend being lower if a mitigation pathway is followed 
rather than a no mitigation pathway. This is important since inter-
nal variability could overwhelm a forced temperature signal from 
diverging trajectories of GHG and aerosol concentrations, masking 
the near-term benefits of mitigation efforts. The probability that 
pursuing a mitigation pathway will result in a lower near-term tem-
perature trend by a factor α as compared with following a no miti-
gation pathway (P(trendmit < trendnomit − α × trendnomit)) is shown in 

Table 1. The values of α are chosen to assess whether the trend is, 
first, lower by any amount (α = 0) and, second, lower by a sizable 
amount (20% and 40%, α = 0.2 and α = 0.4). The probabilities for 
α = 0 are calculated from the distributions created by randomly sam-
pling with replacement from each FaIR trend distribution and tak-
ing their difference, where this is repeated n = 105 times (Fig. 2a,b). 
For α = 0.2 and α = 0.4, the probabilities are calculated by shifting 
the same distributions by the amount α × trendnomit. Comparing the 
1.5 °C and 2 °C scenarios (SSP1-1.9 and SSP1-2.6) with the average 
no mitigation scenario (SSP3-7.0; Fig. 2a), there is around a 90% 
and 80% probability, respectively (Table 1), that the near-term tem-
perature trend would be lower when following the strong mitiga-
tion pathway. Under less ambitious mitigation consistent with the 
current and projected NDCs, the probability of the warming trend 
being lower than in the average no mitigation pathway is 74%. Even 
when the trend under mitigation is required to be at least 20% 
(40%) lower than under no mitigation, there is still an 83% (67%) 
probability of this outcome for SSP1-1.9 compared with SSP3-7.0.

A more stringent test, similar to that described by Marotzke4 
(hereafter M19), is to ask what is the probability that mitigation is 
both sufficient and necessary (Pns) for a reduction in the temperature 
trend over 2021–2040 relative to the trend over the recent past. To 
calculate Pns, the observed 20-year temperature trend for 2000–2019 
(trendobs) is subtracted from each distribution of FaIR near-term 
trends for the mitigation and no mitigation scenarios. Since the 
recently observed trend differs somewhat in multiple observational 

Table 1 | The probability of experiencing different near-term 
(2021–2040) gSAT trends, as a result of following a mitigation 
pathway rather than a no mitigation pathway

Scenario 
comparison

P(trendmit < trendnomit −  
α × trendnomit)

Pns = Pmit − Pnomit

α = 0 α = 0.2 α = 0.4 Pmit Pnomit Pns

Below 1.5 °C 
versus average no 
mitigation

0.91 0.83 0.67 0.88 0.25 0.63

Below 2 °C versus 
average no 
mitigation

0.80 0.65 0.43 0.69 0.25 0.43

NDCs versus 
average no 
mitigation

0.74 0.56 0.32 0.57 0.25 0.32

Below 1.5 °C 
versus worst-case 
no mitigation

0.96 0.90 0.77 0.88 0.12 0.76

Below 2 °C versus 
worst-case no 
mitigation

0.89 0.77 0.56 0.69 0.12 0.57

NDCs versus 
worst-case no 
mitigation

0.85 0.70 0.46 0.57 0.12 0.46

Columns 2 through 4 show the probability of the near-term temperature trend in a mitigation 
scenario (trendmit) being lower than in a no mitigation scenario (trendnomit) by a factor α 
(P(trendmit < trendnomit − α × trendnomit)). For α = 0, the probabilities are calculated from the 
distributions in Fig. 2a,b; for α = 0.2 and α = 0.4, they are calculated by shifting the same 
distributions by the amount α × trendnomit. Columns 5 through 7 show the probability, Pns, that 
mitigation is both necessary and sufficient to experience a near-term temperature trend that is 
smaller than the trend observed, trendobs, over the past 20 years (2000–2019). Pns is given by 
Pmit − Pnomit, where Pmit = P(trendmit < trendobs) and Pnomit = P(trendnomit < trendobs). Pmit and Pnomit are 
calculated from the distributions in Fig. 2c. The probabilities are shown for mitigation pathways 
consistent with the current and projected NDCs, very strong mitigation in line with limiting 
warming to below 1.5 °C (SSP1-1.9) and strong mitigation in line with limiting warming to below 
2 °C (SSP1-2.6), and no mitigation pathways consistent with an average no mitigation baseline 
scenario (SSP3-7.0) and a worst-case no mitigation scenario (SSP5-8.5).
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datasets (Supplementary Fig. 1), a dataset is randomly chosen for 
each comparison with the FaIR projections. The resulting distribu-
tions (Fig. 2c) give the probability of a trend reduction compared 
with the recent past under mitigation (Pmit = P(trendmit < trendobs)) 
and no mitigation (Pnomit = P(trendnomit < trendobs)) scenarios. Pns is 
then calculated as Pns = Pmit − Pnomit. This is similar to the approach 
of M19 (ref. 4), except that here we use the observed trend, which is 
known, rather than a distribution of modelled trends for the recent 
past. Compared with the first test conducted (Table 1 and Fig. 2a,b), 
this more stringent test gives a lower probability of mitigation caus-
ing a reduction in the near-term temperature trend compared with 
no mitigation, as expected. However, for the difference between the 
1.5 °C mitigation scenario and the average no mitigation scenario, 
the probability that mitigation is both necessary and sufficient to 
cause a reduction in the trend as compared with recent observations 
is close to 66% (Table 1).

To investigate the extent to which our results depend on the 
period or trend length considered, we use the FaIR emulator includ-
ing estimates of internal variability to calculate warming rates for 
temperature trends starting in 2021 and ending in different years 
(Fig. 3). The 66% probability range of trends for SSP3-7.0 and 
SSP1-1.9 become non-overlapping after around 20 years (that is, by 
around 2040). This is also around the time at which the SSP5-8.5 
and SSP1-2.6 66% probability ranges become separated. For SSP3-
7.0 and SSP1-2.6, it takes until around 2047 for the 66% probability 
distributions to no longer overlap. For periods shorter than 20 years 
(that is, ending before 2040), the distributions of plausible warm-
ing trends between the scenarios are less distinguishable. The black 

line in Fig. 3 shows the maximum historical observed trend for 
different trend lengths based on the mean of the four datasets in 
Supplementary Fig. 1. The 66% probability range of trends starting 
from 2021 in SSP1-1.9 always falls below the maximum observed 
trend for all periods considered. In contrast, the median trend for 
SSP3-7.0 lies above the maximum observed trend for periods longer 
than around 18 years from the present (that is, ending after 2038).

The results presented here agree with those of Ciavarella et al.26, 
where it is shown that strong mitigation markedly reduces the risk 
of exposure to climate extremes in the near term in an earlier gen-
eration of climate models (CMIP5; ref. 27) driven by Representative 
Concentration Pathway (RCP28) scenarios. However, their focus 
is on regional extremes and local warm seasons, whereas we take 
a global and annual mean perspective motivated by the Paris 
Agreement targets. Our results do differ somewhat from the many 
studies that find little detectable benefit of mitigation in the near 
term3–6,29,30. This may be because these studies use model-based 
rather than observation-based estimates of internal variability 
(Supplementary Fig. 2), because they compare pathways with more 
similar radiative forcings4,6,29,30 (for example, M19 (ref. 4) considers 
RCP2.6 versus RCP4.5, and Samset et al.6 focus on idealized mitiga-
tion scenarios for individual forcers rather than the combination of 
forcing agents in the SSPs) or because they consider shorter time 
horizons4–6 (for example, M19 (ref. 4) analyses 15-year temperature 
trends; Fig. 3).

In contrast to our findings for near-term temperature trends, 
and in agreement with the IPCC’s Fifth Assessment Report (AR5; 
ref. 2) where a different set of models and scenarios were compared, 
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our results show little difference between SSP scenarios for mean 
temperature anomalies (as opposed to trends) in the next 20 years 
(2021–2040) relative to a baseline of 1995–2014 (Fig. 1b). This holds 
for both the observationally constrained CMIP6 projections and the 
FaIR projections with added internal variability. The median 20-year 
mean temperature anomalies for the different SSPs all lie within 
0.62–0.71 °C for the constrained CMIP6 projections (0.55–0.70 °C 
for FaIR), with the range about the median being determined by 
internal variability, differences in climate response between models 
and differences in ERF. Differing conclusions about the detectabil-
ity of differences in temperature trends and anomalies between sce-
narios in Fig. 1 arise because the anomalies quantify the difference 
in warming between the 20-year periods centred on 2030 and 2005, 
while the trends quantify the difference in warming between the 
later years of 2040 and 2021, a period for which the different emis-
sions pathways are more divergent (Supplementary Fig. 3).

To conclude, we have shown that rapid mitigation of global GHG 
emissions substantially reduces the risk of experiencing unprece-
dented rates of surface warming over the next two decades, even 
after accounting for internal variability. This is in addition to the 
longer-term benefits of stringent mitigation for peak warming and 
stabilization of climate. While it is possible that unprecedented 
warming rates could occur in the near term even if society pursues 
a path towards net-zero emissions around mid-century, the risk of 
such an outcome is substantially reduced by around a factor of 13 
for the most ambitious mitigation scenario (SSP1-1.9) as compared 
with an average no mitigation scenario (SSP3-7.0).

The rate of warming over the next 20 years will determine the pace 
at which and extent to which societies and ecosystems will need to 
adapt to evolving climate hazards. On the basis of our results, under 
the strong mitigation scenario SSP1-2.6, the probability of crossing 
the threshold of 1.5 °C of anthropogenic warming in the next 20 
years is around half that in SSP3-7.0 (42% compared with 78% prob-
ability; Supplementary Table 2). Furthermore, the lower near-term 
warming rates under SSP1-1.9 give an estimated 74% probability 
that the 1.5 °C threshold will never be crossed (Supplementary 
Table 2). The IPCC SR1.5 report1,31 shows that warming of 1.5 °C 
is associated with severe and widespread impacts and risks from 
extreme weather events (for example, projections show extreme 
heat-waves becoming widespread in the tropics32–34; the hottest days 
in mid-latitudes becoming up to 3 °C warmer35–37; the coldest nights 
in the Arctic becoming up to 4.5 °C warmer35–37; and increases in 
the frequency, intensity and/or amount of heavy precipitation in 
several regions globally35–37) and from ocean warming and acidifi-
cation, which are expected to impact a range of marine organisms 
and ecosystems (for example, 70–90% of warm-water coral reefs are 
projected to disappear at a warming of 1.5 °C; ref. 38). The aggre-
gated effect of these climate impacts and risks is projected to be the 
highest in regions where vulnerable populations live, particularly in 
South Asia39. The results reported here serve as further motivation 
for setting stringent mitigation targets to reach net-zero emissions 
as soon as possible on both global and individual-country levels.

Lastly, it is important to communicate what can be reasonably 
expected from stringent mitigation in the near term, so as to man-
age expectations and avoid causing doubt in the public mind about 
how well anthropogenic climate change is understood. In particular, 
while we have shown that there is a high probability that stringent 
mitigation would result in lower near-term warming rates com-
pared with an average no mitigation scenario, there is a lower prob-
ability that stringent mitigation is necessary and sufficient to cause 
a slow-down in the warming rate in the near term compared with 
the recent past.
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Methods
The GSAT projections used in this study come from two different approaches: the 
FaIR simple climate model emulator18, with added observation-based estimates 
of internal variability19 described below, and the latest-generation comprehensive 
climate models from CMIP640 constrained by observations17. In the main text, the 
main results regarding temperature trends are quantified using the distributions 
from FaIR rather than CMIP6, since FaIR is computationally inexpensive and can 
therefore more broadly sample parameter uncertainty than the more complex 
models used in CMIP6. FaIR can also be used to explore a wider range of emission 
scenarios, including an NDC-like scenario (not available for CMIP6) and the most 
ambitious mitigation scenario, SSP1-1.9 (too few CMIP6 models were available 
at the time of writing to generate adequate statistics). Note that the temperature 
trend distributions for the constrained CMIP6 models are very similar to those for 
FaIR, so both approaches are in good agreement. All trends were calculated using 
least-squares linear regression.

FaIR model. FaIR was used in the IPCC SR1.5 report41 and uses values for ECS, 
TCR and a time series of ERF to make projections of GSAT. Here, distributions of 
near-term temperature projections for FaIR were calculated using 500 simulations 
for each SSP and the NDC-like scenario, using distributions of ECS, TCR and ERF 
that reflect our latest understanding since SR1.5.

ECS can be defined as −F2x/λ, where F2x is the ERF from a doubling of CO2 
and λ is the global climate feedback parameter. To construct a distribution of ECS, 
we use this relationship, sampling λ from a normal distribution with a mean of 
−1.34 W m−2 K−1 and a standard deviation of 0.28 W m−2 K−1, and with F2x equal 
to 4.01 W m−2. This reproduces a distribution of ECS that is right-skewed (a long 
tail, which does not exclude very high ECS values) and a 5–95% range of 2–5 °C 
with a best estimate near 3 °C (cf. ref. 42). The higher value of F2x compared with 
AR5 results from an updated spectroscopic relationship for stratospherically 
adjusted CO2 radiative forcing of 3.81 W m−2 for a doubling of CO2 (ref. 43) plus 
tropospheric radiative adjustments that sum to 0.20 W m−2 (ref. 44), calculated using 
radiative kernels in ten climate models, and subtracting the land-surface warming 
component. The TCR is sampled to maintain a strong correlation with ECS45, with 
a marginal distribution of TCR of 1.7 °C (1.2–2.4 °C, 5–95% range) that is broadly 
consistent with observational constraints17. Our sampling method allows the 
possibility of high ECS for modest TCR46.

Emissions of GHGs and short-lived climate forcers are taken from the 
Reduced Complexity Model Intercomparison Project dataset47, which assimilates 
anthropogenic and natural short-lived climate forcers48,49 and inversions of GHG 
concentrations observed historically as well as those projected in SSP scenarios16,50. 
The emissions used for the NDC-like pathway are representative of the scenarios 
described in the United Nations Environment Programme Emissions Gap Report 
2019 (ref. 21) and of the pathways for the NDC-like projections in ref. 22. The 
emissions pathways used for each SSP scenario considered and the NDC-like 
scenario are shown in Supplementary Fig. 3. The most ambitious (strong) 
mitigation scenario, SSP1-1.9 (SSP1-2.6), is associated with a mitigation rate of 
−0.3 GtC yr−1 (−0.2 GtC yr−1) in global net CO2 emissions from 2021 to reach 
net-zero emissions in 2056 (2076). This is consistent with keeping anthropogenic 
warming below 1.5 °C (2 °C) with a probability of 74% (92%) (Supplementary Fig. 
4 (refs. 51–53)). These pathways are therefore equivalent to the ‘Below-1.5 °C’ and 
‘Lower-2 °C’ pathways considered in the IPCC SR1.5 report (that is, pathways with 
no or limited overshoot; see Table 2.1 in ref. 54).

Emissions of CO2 are converted to concentrations through a simple carbon 
cycle representation that is dependent on temperature and carbon uptake55. 
The carbon cycle parameters that govern the atmospheric lifetime of CO2 
(pre-industrial airborne fraction, and sensitivity of airborne fraction to increasing 
GSAT and total atmospheric carbon burden) are sampled from Gaussian 
distributions16 that reproduce the observed CO2 concentration of 407 ppm in 2018 
in the ensemble median. Concentrations of non-CO2 gases are calculated from a 
simple one-box model on the basis of atmospheric lifetimes from ref. 56. GHG ERFs 
are calculated from concentrations from ref. 43 for CO2, CH4 and N2O, and ref. 57 
for other species. To account for tropospheric rapid adjustments, CO2 forcing is 
increased by 5% and CH4 forcing is reduced by 14% (ref. 18), the latter case based 
on the behaviour of tropospheric water vapour in climate models that include 
short-wave forcing of methane. Simple relationships that convert aerosol and ozone 
precursors to forcings are also employed58–60, as described in ref. 18. Noting that 
the default CMIP6 aerosol forcing may have resulted in too little warming over 
the later twentieth century in some models47,61 with a strong warming rebound in 
more recent years, we repeat the analysis but substitute in the aerosol ERF time 
series from AR5 (ref. 62). However, this makes little difference to future near-term 
warming rates (Supplementary Fig. 5). Volcanic forcing is determined from the 
CMIP6 stratospheric sulphate optical depth (τ) time series converted to ERF at 
−18τ with an additive offset applied such that the mean volcanic ERF over the 
historical period is zero18. Solar forcing is taken from the CMIP6 extra-terrestrial 
solar flux dataset63 using a reference time frame of 1850–1873 as recommended for 
CMIP6 pre-industrial control simulations. To convert solar flux anomaly to annual 
ERF, it is multiplied by ¼ (geometric factor) × 0.7 (planetary co-albedo).

Twelve categories of anthropogenic and natural radiative forcings are 
simulated using input emissions, with the best estimate and uncertainties in the 

pre-industrial to present-day ERF taken from AR5 (ref. 56), with the exception 
being for aerosols, for which the review of ref. 64 is used for the 5–95% distribution 
of aerosol forcing of −2.0 to −0.4 W m−2 on the basis of a comprehensive 
assessment (this range of present-day aerosol ERF is also applied to the AR5 time 
series in Supplementary Fig. 5). The uncertainties are applied as a fraction of the 
present-day forcing (see Table 3 in ref. 18). Historical (1995–2014) and projected 
near-term (2021–2040) trends in the median total ERF and its 12 components are 
shown in Supplementary Table 1.

FaIR does not include internal climate variability; therefore, the simulations 
described above only give the distribution of externally forced temperature trends 
(Supplementary Fig. 6). However, near-term warming trends will be substantially 
affected by internal variability (for example, see ref. 4). To account for this, we add 
an observation-based estimate of internal variability to the forced temperature 
trends from FaIR. To estimate internal variability from the observed record, we 
use the approach of a recent study19. In this approach, a two-box impulse response 
model is used to calculate forced temperature changes since 1850, and this estimate 
is subtracted from the observational record to estimate temperature changes due 
to internal variability alone (Supplementary Fig. 7a,b). The resulting histogram of 
rolling trends for 20-year segments of the temperature residuals (Supplementary 
Fig. 7c,d) is then added to each of the 500 simulated temperature trends in FaIR 
(Supplementary Fig. 6), and a box plot is calculated (Fig. 1a). Here we use HadOST 
as the observational dataset because its sea surface temperatures (SSTs) are less 
biased than those of other datasets (for example, Berkeley Earth Land–Ocean 
and Cowtan–Way version 2 updated with HadSST3)19. However, the dataset used 
has little effect on the distributions of 20-year temperature trends due to internal 
variability (Supplementary Fig. 8a).

An alternative for estimating the range of temperature trends due to internal 
variability is to use the CMIP6 pre-industrial control simulations. Histograms 
of rolling temperature trends for 20-year segments of the control simulation for 
each of the 48 currently available CMIP6 models are shown in Supplementary 
Fig. 2 (see Supplementary Table 3 for a list of the models used). Before calculating 
these trends, any drift in each simulation was removed by subtracting the linear 
trend across the whole simulation. Clearly, there are noticeable differences in 
the magnitude of low-frequency temperature variability between models, where 
MIROC-ES2L is an example of a low-variability model and BCC-CSM2-MR a 
high-variability model. Adding the histogram for MIROC-ES2L to each of the 500 
FaIR temperature trends gives similar distributions to using an observation-based 
estimate of variability (compare Supplementary Fig. 8a with Supplementary Fig. 
8b(i)). The range of resulting trends is larger when using the high-variability 
model BCC-CSM2-MR (Supplementary Fig. 8b(ii)), but even with this high 
estimate of variability, strong mitigation still substantially reduces the risk of 
unprecedented warming. Under SSP1-1.9 (SSP1-2.6), 13% (26%) of trends are 
above the maximum observed historical trend, while for SSP3-7.0 (SSP5-8.5) this 
increases to 55% (69%).

Observation-based estimates of internal variability are also added to the 
distributions of temperature anomalies for FaIR in Fig. 1b. To do this, we first 
calculate the rolling mean for 20-year segments of the temperature residuals in 
Supplementary Fig. 7b. We then calculate rolling differences in these 20-year 
means, where (to preserve autocorrelation) the temporal separation between each 
pair of 20-year means is consistent with the separation between 2021–2040 and 
1995–2014. The resulting histogram of differences in 20-year means of residuals is 
then added to the forced temperature anomalies from FaIR.

Note that the residuals in Supplementary Fig. 7b do not include natural 
variability due to volcanic and solar forcing, since ref. 19 includes volcanic and 
solar forcing in the impulse response model simulations of historical temperatures. 
Estimated future solar variability is included in the ERF time series used to make 
the FaIR GSAT projections, but forcing from possible future volcanic eruptions 
is not. It is therefore acknowledged that if, in the near term, solar variability 
is different from estimated or a large volcanic eruption occurs, near-term 
temperature trends will be different from those reported here.

CMIP6 models. We now describe the estimates of near-term warming trends 
derived from the CMIP6 models. It has been reported that some CMIP6 models 
simulate higher ECS values than previous versions in CMIP5, with some models 
simulating an ECS of up to around 5.7 °C (for example, ref. 65). The projected raw 
warming rates in those models may be higher than in the past65 and inconsistent 
with recent observed warming rates17. Additional information can be used to 
constrain a multimodel ensemble using so-called emergent constraints. Several 
studies have recently applied constraints to the CMIP6 multimodel ensemble 
global temperature projections using observed warming rates over the past few 
decades as compared with the models’ historical simulations17,61,66,67. Here, we use 
the approach of ref. 17, which applies an emergent constraint on the CMIP6 model 
spread on the basis of the relationship between the surface warming rate over 
1981–2017 and projected future warming levels (R = 0.92 and R = 0.86 for mid- and 
end-of-century, respectively, for SSP5-8.5). This justifies using the present-day 
observational trend estimates to constrain future projections. The observationally 
constrained CMIP6 median warming is over 10% lower by 2050 compared with 
the raw CMIP6 median, and over 17% lower by 2100 (ref. 17). Constrained CMIP6 
projections were not provided for SSP1-1.9 because at the time of writing, not 
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enough models were available to apply the emergent constraint on the basis of past 
warming rates.

A list of the CMIP6 models used to derive the constrained temperature trends 
can be found in Supplementary Table 3 (see Supplementary Table 1 in ref. 17 for a 
more detailed list of the models used in each SSP scenario).

Observation-based surface temperature datasets. To calculate observation-based 
temperature trends over the historical period, we use four datasets: 
HadCRUT4.6.0.0 (HadCRUT4.6; ref. 68), Berkeley Earth Land–Ocean (BE69), 
Cowtan–Way version 2 updated with HadSST3 (CWv2; refs. 70–73) and GISTEMP 
version 4 (GISTEMPv4; refs. 74,75).

The observation-based datasets report global mean historical surface 
temperature anomalies, calculated using a blend of land near-surface air 
temperatures and SSTs (referred to here as GBST17). Over land, HadCRUT4.6 
and CWv2 use CRUTEM4 (ref. 76), BE uses the Berkeley Earth land-surface 
temperature field and GISTEMPv4 uses NOAA GHCN v.4 (ref. 77). Over ocean, 
HadSST is used for HadCRUT4.6, CWv2 and BE, and GISTEMPv4 uses ERSSTv5 
(ref. 78). BE, CWv2 and GISTEMPv4 are interpolated to near-full coverage, while 
HadCRUT4.6 is left uninterpolated and therefore has incomplete coverage. By 
using several datasets, we aim to ensure that the results are not biased towards any 
one combination of land and ocean data.

We report the CMIP6 and FaIR model results in terms of GSAT, since this is 
the most relevant for future climate projections and impact assessments79. Since 
the observation-based GBST metric has been warming slower on average than 
GSAT80, we apply a scaling factor to GBST that accounts for the blending bias and 
converts it to a GSAT equivalent, therefore allowing a like-for-like comparison 
between the observations and models. We use GSAT = 1.087 × GBST for BE, 
CWv2 and GISTEMPv4, and GSAT = 1.19 × GBST for HadCRUT4.6. These scaling 
factors are based on estimates derived from the CMIP5 models for fully blended 
GBST (applicable to BE, CWv2 and GISTEMPv4) and blended-masked GBST 
(applicable to HadCRUT4.6); see Table 1 in ref. 81 and Supplementary Fig. 1 in  
ref. 82. Note that the results reported in this study are relatively insensitive to the 
exact scaling factor applied.

To calculate the observation-based estimates of internal variability in 20-year 
temperature trends (Supplementary Fig. 7), we use the same datasets as in ref. 19:  
CWv2 (updated with HadSST4 (ref. 83) here), BE and HadOST19. HadOST 
combines CWv2 over land with HadISST2 (ref. 84) and OSTIA85 data over 
ocean, and is interpolated to near-full coverage. To convert HadOST to a GSAT 
equivalent, we use the scaling factor for fully blended GBST (1.087). To account for 
a warm bias in SSTs around 1942–1945 due to changing SST sampling methods, 
correction factors have been applied over these years to the observation-based 
datasets in Supplementary Fig. 7 as in ref. 19.

Data availability
The data that support the findings of this study are available at https://github.
com/Priestley-Centre/Near_term_warming with the identifier https://doi.
org/10.5281/zenodo.4252506 (ref. 86). This repository includes the FaIR simulation 
data, the constrained CMIP6 projections, the observation-based data and the 
observation-based estimates of internal variability (in fully processed form only). 
The SSP emissions datasets used in the FaIR simulations were downloaded from 
https://www.rcmip.org/, and the NDCs emissions dataset was provided by J. 
Rogelj. The constrained CMIP6 projections are based on ref. 17 and used surface 
air temperature data downloaded from ESGF (4 December 2019). The raw data 
used to calculate the observation-based estimates of internal variability are based 
on ref. 19 and were provided by K. Haustein. The surface air temperature data for 
the CMIP6 pre-industrial control simulations were obtained from the JASMIN/
CEDA archive (29 July 2020). Further details of any CMIP6 data used are given in 
Supplementary Table 3 (refs. 87–155).

Code availability
The FaIR model is available at https://doi.org/10.5281/zenodo.3588880 (ref. 156). 
FaIR version 1.5 is used for all simulations in this paper. The code used to set up the 
FaIR simulations, analyse the data and produce the figures is available at https://
github.com/Priestley-Centre/Near_term_warming with the identifier https://doi.
org/10.5281/zenodo.4252506 (ref. 86). Python/Matplotlib was used for all coding 
and data visualization; for some figures, the vector graphics editor Inkscape 
(available at https://inkscape.org/) was used to combine different figure parts into 
one file.
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