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Abstract	

Many	studies	have	demonstrated	the	feasibility	of	 fully	renewable	power	systems	 in	various	countries	
and	regions.	Yet	the	future	costs	of	key	technologies	are	highly	uncertain	and	little	is	known	about	the	
robustness	of	a	renewable	power	system	to	these	uncertainties.	To	analyze	 it,	we	build	315	long-term	
cost	scenarios	on	the	basis	of	recent	prospective	studies,	varying	the	costs	of	key	technologies,	and	we	
model	 the	 optimal	 renewable	 power	 system	 for	 France	 over	 18	meteorological	 years,	 simultaneously	
optimizing	investment	and	dispatch.		

Our	results	show	that	the	total	cost	of	a	100%	system	is	not	that	sensitive	to	the	power	mix	chosen	in	
2050.		Certainly,	the	optimal	energy	mix	is	highly	sensitive	to	cost	assumptions:	the	installed	capacity	in	
PV,	onshore	wind	and	power-to-gas	varies	by	a	factor	of	5,	batteries	and	offshore	wind	even	more.	But	
the	 total	 cost	 will	 not	 be	 higher	 than	 today,	 and	 choosing	 a	 non-optimal	 electrical	 mix	 does	 not	
significantly	increase	this	total	cost.	Contrary	to	current	estimates	of	integration	costs,	this	indicates	that	
renewable	technologies	will	become	by	and	large	substitutable.	

Keywords:	Power	system	modelling;	Variable	renewables;	Electricity	storage;	Robust	decision	making.	
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1 Introduction1	

According	to	Article	4.1	of	the	Paris	Agreement,	the	Parties	shall	endeavor	to	rapidly	reduce	greenhouse	
gas	emissions	in	order	to	achieve	a	balance	between	anthropogenic	emissions	by	sources	and	removals	
by	sinks	in	the	second	half	of	this	century.	From	this	point	of	view,	the	electricity	sector	will	have	a	key	
role	to	play,	as	decarbonisation	 is	considered	to	be	easier	 in	this	sector	than	 in	transport,	buildings	or	
agriculture.	Renewable	energy	will	be	the	cornerstone	of	decarbonisation,	making,	with	CO2	capture	and	
storage,	a	greater	contribution	than	nuclear	energy	and	fossil	fuels	(Rogelj	et	al.,	2018).	

Following	 Joskow	 (2011)	 and	 Hirth	 (2015),	 many	 articles	 have	 focused	 on	 the	 optimal	 proportion	 of	
renewable	 energies	 in	 the	 electricity	 mix.	 This	 literature	 has	 highlighted	 the	 existence	 of	 systemic	
integration	 costs	 related	 to	 the	 deployment	 of	 variable	 renewable	 energies.	 In	 particular,	 a	 “self-
cannibalization”	phenomenon	was	highlighted,	linked	to	the	fact	that	all	the	solar	panels	in	a	given	farm	
produce	their	electricity	at	the	same	time,	just	like	wind	turbines.	In	the	absence	of	affordable	storage,	
these	 integration	 costs	 have	 two	 consequences:	 (i)	 deployment	 of	 renewable	 energies	 leads	 to	 a	
significant	 additional	 cost,	 rapidly	 increasing	with	 the	 deployment	 rate;	 (ii)	 the	 right	 balance	must	 be	
struck	between	the	different	production	technologies	to	minimize	this	additional	cost.		

These	results	have	direct	policy	implications	in	the	trade-off	between	visibility	and	flexibility.	On	the	one	
hand,	 investors	want	 visibility	 for	 the	development	of	 economic	 sectors,	 such	as	quantified	 targets	 in	
terms	of	installed	renewable	capacity.	On	the	other	hand,	a	high	sensitivity	of	the	optimal	power	mix	to	
technology	costs	argues	for	a	flexible	approach,	allowing	trajectories	to	be	readjusted	according	to	the	
evolution	of	technologies.	Current	results	thus	tend	to	support	the	flexibility	approach	–	at	the	expense	
of	visibility	for	investors.	

However,	 these	 results	 of	 increasing	 costs	 and	 right	 balance	might	 not	 hold	much	 longer,	 due	 to	 the	
rapid	decline	in	production	and	storage	costs.	 In	the	space	of	seven	years,	the	cost	of	solar	panels	has	
been	reduced	by	a	factor	of	seven,	while	batteries	now	seem	to	be	following	a	similar	pattern	(Henze,	
2019).	Moreover,	recent	wind	turbines	benefit	from	a	flatter	production	profile	than	older	models	(Hirth	
and	Müller,	2016).	Finally,	methanation,	which	offers	an	alternative	for	seasonal	storage,	is	also	making	
significant	progress.	These	developments	will	probably	still	be	significant	by	2050,	the	political	horizon	
used	today	in	the	design	of	public	policies.		

While	the	feasibility	of	a	100%	renewable	mix	has	already	been	highlighted	by	many	studies	(Brown	et	
al,	 2018,	 and	 references	 therein),	 the	 question	 is	 now	 that	 of	 cost	 sensitivity:	 do	 these	 reductions	 in	
production	 and	 storage	 costs	 call	 into	 question	 the	 previous	 conclusions	 about	 the	 announced	 high	
additional	systemic	cost	of	renewable	energy?		

																																																													

1	We	thank	an	anonymous	referee	from	the	FAERE	Working	papers	series	for	his	or	her	very	useful	comments.		
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If	 this	 phenomenon	 of	 increasing	 costs	 does	 not	 hold	 any	more,	 it	would	mean	 that	 the	 relationship	
between	renewable	energy	sources	is	changing	from	being	complements	to	being	substitutes.	It	would	
be	 then	possible	 to	 identify	one	or	 several	 “robust”	energy	mixes,	 in	 the	 sense	 that	 their	overall	 cost	
does	not	vary	much,	even	if	the	cost	of	the	different	technologies	finally	differs	from	the	initial	forecasts.	
In	 such	 a	 case,	 the	 political	 conclusion	 would	 shift:	 proving	 flexibility	 to	 investors	 through	 fixed	
renewable	targets	would	prevail	over	flexible	approaches.	

To	shed	light	on	these	questions,	we	build	a	new	open-source	model	called	EOLES	(Energy	Optimization	
for	 Low	Emission	 Systems)	 and	 apply	 it	 to	 continental	 France.	 EOLES	minimizes	 the	 total	 system	 cost	
while	 satisfying	 power	 demand	 at	 each	 hour	 for	 a	 period	 of	 up	 to	 18	 years.	 It	 includes	 six	 power	
generation	 technologies	 (offshore	and	onshore	wind,	 solar,	 two	 types	of	hydro	and	biogas)	and	 three	
storage	technologies	(batteries,	pumped	hydro	and	power-to-gas).		

Using	this	model,	we	study	the	sensitivity	of	the	power	mix	in	2050,	through	315	cost	scenarios	for	2050,	
varying	all	key	technology	costs:	onshore	and	offshore	wind	by	+/-	25%;	PV,	batteries	and	power-to-gas	
by	+/-50%.	Then	we	aim	to	identify	whether	a	robust	power	mix	can	be	found.	

The	remainder	of	this	paper	 is	organized	as	follows.	 In	Section	2	we	present	the	EOLES	model.	Results	
are	presented	in	Section	3	while	Section	4	provides	a	discussion	and	concludes.		

2 Materials	and	methods	

2.1 Model	description	

EOLES	is	a	dispatch	and	investment	model	that	carries	out	linear	optimization	with	respect	to	total	cost.	
It	minimizes	the	annualized	power	generation	and	storage	costs,	including	the	cost	of	connection	to	the	
grid.		

The	EOLES	model	 includes	six	power	generation	technologies:	offshore	and	onshore	wind	power,	solar	
photovoltaics	 (PV),	 run-of-river	and	 lake-generated	hydro-electricity,	 and	biogas	 combined	with	open-
cycle	 gas	 turbines.	 It	 also	 includes	 three	 energy	 storage	 technologies:	 pump-hydro	 storage	 (PHS),	
batteries	 and	methanation	 combined	with	 open-cycle	 gas	 turbines.	 These	 technologies	 are	 shown	 in	
Figure	1.	

The	model	considers	continental	France	as	a	single	node.	PV	and	onshore	wind	are	simulated	for	the	95	
departments	(an	administrative	entity	corresponding	to	the	European	NUTS	3	level).	The	proportion	of	
the	installed	capacity	 in	each	department	remains	the	same	in	all	simulations,	at	the	level	observed	in	
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2017.	The	model	is	written	in	GAMS	and	solved	using	the	CPLEX	solver.	The	code	and	data	are	available	
on	Github.1		

Figure	2	provides	an	illustrative	output	of	the	model	,	i.e.	the	optimal	dispatch	for	a	week	in	winter	and	
for	a	week	in	summer,	as	well	as	the	corresponding	power	price,	for	each	hour	of	the	week.	

The	 remainder	 of	 this	 section	 presents	 the	main	 equations	 (2.2)	 and	 the	 input	 data	 (2.3).	 A	 detailed	
description	of	all	sets,	parameters	and	variables	of	the	model	is	available	in	Appendix	4.	

	

Figure	1	Graphical	description	of	the	EOLES	model	

																																																													

1	https://github.com/BehrangShirizadeh/EOLES_elecRES.	
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Figure	2	Hourly	power	generation,	electricity	demand,	storage	charge	and	discharge	profiles	and	power	prices	for	(a)	the	third	

week	of	January	(Winter)	and	(b)	the	third	week	of	July	(Summer)	2006	
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2.2 Model	equations	

Objective	Function	

In	EOLES,	dispatch	and	investment	are	determined	simultaneously	by	linear	optimization.	CAPEX	(capital	
expenditure)	and	OPEX	(operational	expenditure).		

The	objective	function,	shown	in	Equation	(1),	 is	the	sum	of	all	costs	over	the	chosen	period,	including	
fixed	 investment	 costs,	 fixed	 O&M	 costs	 (which	 are	 both	 annualized)	 and	 variable	 costs.	 For	 some	
storage	options,	in	addition	to	the	CAPEX	related	to	charging	capacity	per	!"#,	another	type	of	CAPEX	is	
introduced:	a	capex	related	to	energy	capacity,	per	!"ℎ#		

	

%&'( = *+#, − .+#,
#/ ×1223456+#,+#, + 	 (:&;<=>?+@?+@ ×1223456?+@

#A ) + 	 (*+#,×+#,

C&&=+#,) + ('?+@× E1FGHI5J
Eℎ + C&&=I5J

Eℎ )?+@ 	 (K+#,,M×	N&&=+#,)M+#, /1000	 (1)	

where	 *+#, 	 represents	 the	 installed	 capacities	 of	 production,	 :&;<=>?+@ 	 is	 the	 volume	 of	 energy	
storage	 in	 MWh,	'?+@	 is	 the	 capacity	 of	 storage	 in	 MW,	 1223456	 is	 the	 annualized	 investment	 cost,	
C&&=	 	 and	N&&=	 	 respectively	 represents	 fixed	 and	 variable	 operation	 and	maintenance	 costs	 and	
K+#,,M	is	the	hourly	generation	of	each	technology.	

Adequacy	equation	

Electricity	 demand	must	 be	met	 for	 each	 hour.	 If	 power	 production	 exceeds	 electricity	 demand,	 the	
excess	electricity	can	be	either	sent	to	storage	units	or	curtailed	(equation	3).		

K+#,,M+#, ≥ 	SGT12SM + 	 '(&UVK>?+@,M?+@ 		 (3)	

Where	 K+#,,M	 is	 the	 power	 produced	 by	 technology	 tec	 at	 hour	 h	 and	 '(&UVK>?+@,M	 is	 the	 energy	
entering	the	storage	technology	str	at	hour	h.		

Renewable	power	production	

For	 each	 variable	 renewable	 energy	 (VRE)	 technology,	 the	 hourly	 power	 production	 is	 given	 by	 the	
hourly	capacity	factor	profile	multiplied	by	the	installed	capacity	available	for	each	hour	(equation	4).	

KW@#,M = 	*W@#×	ECW@#,M	(4)	

Where	KW@#,M	 is	the	electricity	produced	by	each	VRE	resource	at	hour	h,	*W@# 	 is	the	 installed	capacity	
and	ECW@#,M	is	the	hourly	capacity	factor.	
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Energy	storage	

Energy	 stored	 by	 storage	 option	 str	 at	 hour	 h+1	 is	 equal	 to	 the	 energy	 stored	 at	 hour	 h	 plus	 the	
difference	 between	 the	 energy	 entering	 and	 leaving	 the	 storage	 option	 at	 hour	 h,	 accounting	 for	
charging	and	discharging	efficiencies	(equation	5):	

'(&U>X?+@,MYZ = 	 '(&U>X?+@,M + ('(&UVK>?+@,M×[?+@
\A ) − (

]^_`,a
b^_`
cd_ )	 (5)	

Where	'(&U>X?+@,M	is	the	energy	in	storage	option	str	at	hour	h,	while	[?+@\A 	and	[?+@ef+	are	the	charging	
and	discharging	efficiencies.	

Secondary	reserve	requirement	

Three	types	of	operating	reserves	are	defined	by	ENTSO-E	 (2013),	according	 to	 their	activation	speed.	
The	 fastest	 reserves	 are	 Frequency	 Containment	 Reserves	 (FCRs),	 which	 must	 be	 able	 to	 be	 on-line	
within	 30	 seconds.	 The	 second	 group	 is	 made	 up	 of	 Frequency	 Restoration	 Reserves	 (FRRs),	 in	 turn	
divided	into	two	categories:	a	fast	automatic	component	(aFRRs),	also	called	‘secondary	reserves’,	with	
an	 activation	 time	 of	 no	 more	 than	 7.5	 min;	 and	 a	 slow	 manual	 component	 (mFRRs),	 or	 ‘tertiary	
reserves’,	with	an	activation	time	of	no	more	than	15	min.	Finally,	reserves	with	a	startup-time	beyond	
15	minutes	are	classified	as	Replacement	Reserves	(RRs).		

Each	category	meets	specific	system	needs.	The	fast	FCRs	are	useful	in	the	event	of	a	sudden	break,	like	
a	 line	 fall,	 to	 avoid	 system	 collapse.	 FRRs	 are	 useful	 for	 variations	 over	 several	 minutes,	 such	 as	 a	
decrease	 in	wind	 or	 PV	 output.	 Finally,	 the	 slow	 RRs	 act	 as	 a	 back-up,	 slowly	 replacing	 FCRs	 or	 FRRs	
when	the	system	imbalance	lasts	more	than	15	minutes.	In	the	model	we	only	consider	FRRs,	since	they	
are	the	most	impacted	by	VRE	integration.	FRRs	can	be	defined	either	upwards	or	downwards,	but	since	
the	electricity	output	of	VREs	can	be	curtailed,	we	consider	only	upward	reserves.	

The	 quantity	 of	 FRRs	 required	 to	 meet	 ENTSO-E’s	 guidelines	 is	 given	 by	 equation	 (6).	 These	 FRR	
requirements	 vary	 with	 the	 variation	 observed	 in	 the	 production	 of	 renewable	 energies.	 They	 also	
depend	on	the	observed	variability	in	demand	and	on	forecast	errors:	

U':g@@,Mg@@ = 	 (hW@#×	*W@#)W@# + 	SGT12SM×(1 + iWj@\j+\eA
kejl )×ifA,#@+j\A+m

kejl 	 (6)	

Where	U':g@@,M	is	the	required	hourly	reserve	capacity	from	each	of	the	reserve-providing	technologies	
(dispatchable	technologies)	indicated	by	the	subscript	frr;	hW@# 	is	the	additional	FRR	requirement	for	VRE	
because	 of	 forecast	 errors,	 iWj@\j+\eA

kejl 	 is	 the	 load	 variation	 factor	 and	 ifA,#@+j\A+m
kejl 	 is	 the	 uncertainty	

factor	 in	the	 load	because	of	hourly	demand	forecast	errors.	The	method	for	calculating	these	various	
coefficients	according	to	ENSTO-E	guidelines	is	detailed	by	Van	Stiphout	(2017).	
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Power-production-related	constraints	

The	 relationship	 between	 hourly-generated	 electricity	 and	 installed	 capacity	 can	 be	 calculated	 using	
equation	 (7).	 Since	 the	 chosen	 time	 slice	 for	 the	 optimization	 is	 one	 hour,	 the	 capacity	 enters	 the	
equation	directly	instead	of	being	multiplied	by	the	time	slice	value.	

K+#,,M ≤ *+#, 	 (7)	

The	installed	capacity	of	all	the	dispatchable	technologies	should	be	more	than	the	electricity	generation	
required	 of	 those	 technologies	 to	 meet	 demand;	 it	 should	 also	 satisfy	 the	 secondary	 reserve	
requirements	 Installed	capacity	 for	dispatchable	 technologies	can	 therefore	be	expressed	by	equation	
(8).	

*g@@ ≥ 	Kg@@,M + U':g@@,M	 (8)	

Monthly	 available	 energy	 for	 the	 hydroelectricity	 generated	 by	 lakes	 and	 reservoirs	 is	 defined	 using	
monthly	lake	inflows	(equation	9).	This	means	that	energy	stored	can	be	used	within	the	month	but	not	
across	months.	This	 is	a	parsimonious	way	of	representing	the	non-energy	operating	constraints	faced	
by	dam	operators,	as	in	Perrier	(2018).	

o1!Gp ≥ 	 Kkjq#,Mge@	M∈p 	 (9)	

Where	 Kkjq#,M	 is	 the	 hourly	 power	 production	 by	 lakes	 and	 reservoir,	 and	 o1!Gp	 is	 the	 maximum	
electricity	 that	 can	 be	 produced	 from	 this	 energy	 resource	 during	 one	 month.	 This	 parameter	 is	
calculated	 by	 summing	 hourly	 power	 production	 from	 this	 hydroelectric	 energy	 resource	 over	 each	
month	of	the	year	to	capture	the	meteorological	variation	of	hydroelectricity,	using	the	online	portal	of	
RTE1	(the	French	transmission	network	operator).	

The	 energy	 that	 can	 be	 produced	 by	 biogas	 is	 limited,	 since	 the	 main	 resources	 of	 this	 energy	 are	
methanization	 (anaerobic	digestion)	and	pyro-gasification	of	solid	biomass.	Both	processes	are	 limited	
by	 several	 constraints	and	according	 to	 the	ADEME	“visions	2030-2050”	 report	 (2013)	electricity	 from	
biogas	produced	by	these	two	processes	can	be	projected	as	15	TWh	per	year	from	2030	on	(Gs\etj?

pj/ ),	
which	is	presented	in	equation	10.	

Ks\etj?,M
uvwx
Myz ≤ 	 Gs\etj?

pj/ 	 (10)	

Run-of-river	 power	 plants	 represent	 another	 source	 of	 hydro-electricity	 power.	 River	 flow	 is	 also	
strongly	 dependent	 on	 meteorological	 conditions	 and	 it	 can	 be	 considered	 as	 a	 variable	 renewable	

																																																													

1	https://www.rte-france.com/fr/eco2mix/eco2mix-telechargement		
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energy	resource.	Hourly	run-of-river	power	production	data	from	the	RTE	online	portal	has	been	used	to	
prepare	the	hourly	capacity	factor	profile	of	this	energy	resource,	J4NGJM	in	equation	(11);	

K@\W#@,M = 	*@\W#@	×	J4NGJM	 (11)	

As	shown	in	Figure	1,	two	renewable	gas	technologies	are	considered;	biogas	and	methanation.	Both	of	
them	produce	renewable	methane,	which	can	be	used	 in	gas	power	plants.	 In	the	model,	 the	 latter	 is	
considered	to	be	an	open	cycle	gas	 turbine	 (OCGT)	due	to	 its	high	operational	 flexibility	and	equation	
(12)	shows	the	relationship	of	the	power	production	from	these	two	methane	resources;	

Ktj?,M = 	 K,eps,M,eps 	 (12)	

Where	K,eps,M	 is	 the	 power	 production	 from	 each	 renewable	 gas	 resource,	 and	Ktj?,M	 is	 the	 power	
production	from	the	OCGT	power	plant	which	uses	these	two	resources	as	fuel.	It	is	worth	mentioning	
that	 the	efficiency	of	 this	 combustion	process	 is	 considered	 in	both	 the	15	("ℎ# 	 of	 yearly	electricity	
production	from	biogas,	and	the	discharge	efficiency	of	the	methanation	process	as	defined	in	equation	
(5).	

The	 maximum	 installed	 capacity	 of	 each	 technology	 depends	 on	 land-use-related	 constraints,	 social	
acceptance,	 the	 maximum	 available	 natural	 resources	 and	 other	 technical	 constraints;	 therefore,	 a	
technological	constraint	on	maximum	installed	capacity	 is	defined	 in	equation	 (13)	where	.+#,pj/	 is	 this	
capacity	 limit,	 taken	 from	 the	 development	 trajectories	 for	 the	 French	 electricity	 mix	 for	 the	 period	
2020-2060	(ADEME,	2018):	

*+#, ≤ 	 .+#,
pj/	 (13)	

Storage-related	constraints	

To	prevent	optimization	 leading	 to	a	very	high	amount	of	 stored	energy	 in	 the	 first	hour	 represented	
and	a	low	one	in	the	last	hour,	we	add	a	constraint	to	ensure	the	replacement	of	the	consumed	stored	
electricity	in	every	storage	option	(equation	14):	

'(&U>X?+@,Myz	 ≤ 	'(&U>X?+@,Myuvwx	 (14)	

While	equations	(5)	and	(14)	define	the	storage	mechanism	and	constraint	 in	terms	of	power,	we	also	
limit	the	available	volume	of	energy	that	can	be	stored	by	each	storage	option	(equation	15):	

'(&U>X?+@,M	 ≤ 	:&;<=>?+@ 	 	 (15)	

Equation	(16)	limits	the	energy	entry	to	the	storage	units	to	the	charging	capacity	of	each	storage	unit,	
which	means	that	the	charging	capacity	cannot	exceed	the	discharging	capacity.		
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'(&U>X?+@,M ≤ 	 '?+@ ≤ 	*?+@ 	 (16)	

2.3 Input	data	

The	main	input	data	can	be	placed	in	three	main	classes:	cost	data,	VRE	profiles	and	electricity	demand	
profiles.		

Cost	data	

The	 economic	 parameters	 for	 the	 power	 production	 technologies	 are	 taken	 from	 the	 European	
Commission	 Joint	 Research	 Center	 (2017)	 study	 of	 scenario-based	 cost	 trajectories	 to	 2050,	 while	
energy	technology	reference	indicator	projections	for	2010-2050	(JRC,	2014,	have	been	used	for	OCGT	
gas	power	plants.	Values	attributed	to	the	economic	parameters	of	power	production	technologies	for	
2050	are	summarized	 in	Table	1.	 It	 is	worth	mentioning	that	 the	grid	entry	cost	of	€25.9/kW	for	each	
power	 plant	mandated	 by	 RTE	 (2018)	 has	 been	 added	 to	 the	 capital	 expenditure	 values	 of	 each	 VRE	
technology,	 and	 the	 annuities	 (annualized	 CAPEX)	 are	 the	 results	 of	 these	 calculations.	 More	
information	about	the	cost	scenarios	and	the	cost	estimation	methodology	used	in	the	JRC’s	2017	study	
can	be	found	in	Appendix	1.	

Table	1	Economic	parameters	of	power	production	technologies	

Technology	 CAPEX	
(€/kWe)	

Lifetime	
(years)	

Annuity	
(€/kWe/year)	

Fixed	 O&M	
(€/kWe/year)	

Variable	
O&M	
(€/MWhe)	

Source	

Offshore	 wind	

farm*	
2330	 30	 144.3677	 47.0318	 0	 JRC	(2017)	

Onshore	 wind	
farm*	

1130	 25	 77.6621	 34.5477	 0	 JRC	(2017)	

Solar	PV*	 425	 25	 30.0052	 9.2262	 0	 JRC	(2017)	

Hydroelectricity	 –		

lake	and	reservoir	
2275	 60	 110.2334	 11.375	 0	 JRC	(2017)	

Hydroelectricity	 –		

run-of-river	
2970	 60	 143.9091	 14.85	 0	 JRC	(2017)	

Biogas		

(Anaerobic	

digestion)	

2510	 25	 135.5066	 83.9	 3.1	 JRC	(2017)	

OCGT		 550	 30	 33.7653	 16.5	 0	 JRC	(2014)	

*For	offshore	wind	power	on	monopiles	at	30km	to	60km	from	the	shore,	 for	onshore	wind	power,	 turbines	with	medium	specific	 capacity	
(0.3kW/m2)	and	medium	hub	height	(100m)	and	for	solar	power,	an	average	of	the	costs	of	utility	scale,	commercial	scale	and	residential	scale	
systems	without	 tracking	 are	 taken	 into	 account.	 In	 this	 cost	 allocation,	we	 consider	 solar	 power	 as	 a	 simple	 average	 of	 ground-mounted,	
rooftop	residential	and	rooftop	commercial	technologies.	For	lake	and	reservoir	hydro	we	take	the	mean	value	of	low-cost	and	high-cost	power	
plants.	
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For	the	storage	technologies,	the	“Commercialization	of	Energy	Storage	in	Europe”	report	prepared	by	
FCH-JU	(2015)	and	a	very	recent	article	by	Schmidt	(2019)	about	 long-term	cost	projections	of	storage	
technologies	have	been	used	respectively	for	pumped	hydro	storage	and	Li-Ion	battery	storage	options.	
“The	 potential	 of	 Power-to-Gas”	 study	 by	 ENEA	 consulting	 (2016)	 has	 been	 used	 for	 methanation	
storage.	 Using	 these	 three	 studies	 the	 2050	 cost	 projection	 of	 storage	 technologies	 are	 presented	 in	
Table	2.	The	cost	of	methanation	is	made	up	of	the	cost	of	electrolysis	units	and	the	Sabatier	reaction1.	

Table	2	Economic	parameters	of	storage	technologies	

Technology	 CAPEX	
(€/kWe)	

CAPEX	
(€/kWhe)	

Lifetime	
(years)	

Annuity	
(€/kWe/y

ear)	

Fixed		
O&M	

(€/kWe/
year)	

Variable	
O&M	

(€/MWhe)	

Storage	
annuity	
(€/kWhe/
year)	

Source	

Pumped	
hydro	
storage	
(PHS)	

500	 5	 55	 24.6938	 7.5	 0	 0.2261	 FCH-JU	
(2015)	

Battery	
storage	
(Li-Ion)	

140	 100	 12.5	 14.8876	 1.96	 2	 10.3247	 Schmidt	
(2019)	

Methanation	 1150	 0	 20/25*	 117.9262	 75.75	 3	 0	 ENEA	
(2016)	

*The	lifetime	of	electrolysis	units	is	20	years,	while	the	lifetime	of	methanation	units	is	25	years.	

The	carbon	dioxide	required	for	methanation	is	assumed	to	come	from	capturing	and	transporting	the	
excess	 carbon	dioxide	 resulting	 from	 the	methanization	process	 (for	 the	production	of	biogas).	About	
30%	of	the	product	of	bio-methane	production	from	methanization	by	anaerobic	digestion	is	gas	phase	
carbon	 dioxide	 (Ericsson,	 2017).	 According	 to	 ZEP	 (2011)	 on	%&|	 transport,	 the	 cost	 of	 transporting	
carbon	dioxide	along	a	200km	onshore	pipeline	is	€4/5%&|.		

Considering	 a	 100km	 long	 onshore	 pipeline	 (considering	 maximum	 100km	 of	 distance	 between	 the	
methanation	units	and	the	biogas	production	units),	the	%&|	transport	cost	for	the	methanation	storage	
is	€1/MWh	(See	appendix	5),	to	be	added	to	the	gas	storage	cost	which	 is	€2/MWh	(according	to	CRE	
(2018)	 -	 French	 energy	 regulation	 commission),	 the	 variable	 cost	 of	 the	 methanation	 storage	 is	
€3/="ℎ#.		

																																																													

1	The	reaction	that	produces	methane	from	hydrogen	and	carbon	dioxide	is	called	the	Sabatier	reaction.	
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VRE	profiles	

Variable	 renewable	 energies’	 (offshore	 and	 onshore	 wind	 and	 solar	 PV)	 hourly	 capacity	 factors	 have	
been	prepared	using	the	renewables.ninja	website1,	which	provides	the	hourly	capacity	factor	profiles	of	
solar	and	wind	power	from	2000	to	2017	at	the	geographical	scale	of	French	counties	(départements),	
following	the	methods	elaborated	by	Pfenninger	and	Staffell	(2016)	and	Staffell	and	Pfenninger	(2016).	
These	 renewables.ninja	 factors	 reconstructed	 from	 weather	 data	 provide	 a	 good	 approximation	 of	
observed	data:	Moraes	et	al.	(2018)	finds	a	correlation	of	0.98	for	wind	and	0.97	for	solar	power	with	
the	in-situ	observations	provided	by	the	French	transmission	system	operator	(RTE).	

To	 prepare	 hourly	 capacity	 factor	 profiles	 for	 offshore	wind	 power,	we	 first	 identified	all	 the	 existing	
offshore	 projects	 around	 France	 using	 the	 “4C	 offshore”	 website2,	 and	 using	 their	 locations,	 we	
extracted	 the	 hourly	 capacity	 factor	 profiles	 of	 both	 floating	 and	 grounded	 offshore	wind	 farms.	We	
then	averaged	the	most	remarkable	projects	for	each	offshore	wind	foundation	technology	(floating	and	
grounded)	for	each	year	from	2000	to	2017.	The	Siemens	SWT	4.0	130	has	been	chosen	as	the	offshore	
wind	 turbine	 technology	 because	 of	 recent	 increase	 in	 the	 market	 share	 of	 this	 model	 and	 its	 high	
performance.	The	hub	height	of	this	turbine	is	set	to	120	meters.	

Appendix	 2	 provides	 more	 information	 about	 the	 methodology	 used	 in	 the	 preparation	 of	 hourly	
capacity	factor	profiles	of	wind	and	solar	power	resources.	

Electricity	demand	profile	

Hourly	electricity	demand	is	ADEME	(2015)’s	central	demand	scenario	for	2050.	This	demand	profile	falls	
in	the	middle	of	the	four	proposed	demand	scenarios	for	2050	in	France	by	Arditi	et	al.	(2013)	during	the	
national	debates	on	the	French	energy	transition	(DNTE).	It	amounts	to	422	("ℎ#/year,	12%	less	than	
the	average	power	consumption	in	the	last	10	years.	

Discount	rate	

We	use	a	discount	rate	of	DR=4.5%	i.e.	the	discount	rate	recommended	by	the	French	government	for	
use	in	public	socio-economic	analyses	(Quinet,	2014).	This	discount	rate	is	used	to	calculate	the	annuity	
in	the	objective	function,	using	the	following	equation:	

1223456+#, =
ÄÅ×ÇÉÑÖÜ_áà
Zâ	 ZYÄÅ äã_ 	 (2)	

																																																													

1	https://www.renewables.ninja/		

2	https://www.4coffshore.com/		
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Where	DR	is	the	discount	rate.	

3 Results	

3.1 The	optimal	power	mix	is	highly	sensitive	to	power	cost	assumptions	

To	test	the	sensitivity	of	the	optimal	power	to	the	costs	of	various	technologies,	we	consider	the	range	
of	uncertainty	indicated	in	Table	3.	For	power	generation	technologies,	uncertainty	applies	to	the	fixed	
costs,	defined	as	capital	costs	and	fixed	operation	and	maintenance	costs.	For	storage	technologies,	 it	
applies	 to	 the	main	 cost	 component	 of	 each	 of	 them;	 fixed	 costs	 for	methanation	 (similar	 to	 power	
generation	technologies)	and	energy-related	CAPEX	for	batteries.	For	wind	technologies,	the	choice	of	a	
+/-	25%	uncertainty	range	rather	than	+/-	50%	comes	from	the	expert	elicitation	survey	by	Wiser	et	al.	
(2016).		
No	 variation	 in	 the	 cost	 of	 hydro	 and	 biogas	 is	 accounted	 for,	 the	 former	 because	 it	 is	 a	 mature	
technology	 with	 low	 uncertainty	 and	 the	 latter	 because	 in	 the	 model	 the	 amount	 of	 biogas	 used	 is	
determined	by	the	availability	constraint,	not	by	its	cost.	

Table	3	Variations	in	the	costs	of	key	technologies	accounted	for	in	the	sensitivity	analysis	

Technology		 Solar	PV	 Offshore	wind	 Onshore	wind	 Batteries	 Methanation		
Uncertainty	
range	

-50%;	-25%;	0%;	
+25%;	+50%	

-25%;	0%;	+25%	 -25%;	0%;	+25%	 -50%;	0%;	+50%	 -50%;	0%;	+50%	

All	the	combinations	of	variations	presented	in	Table	3	would	give	405	different	cost	scenarios	(5Z×3å).	
Out	of	all	 these	options,	we	select	315	scenarios	which	provide	higher	 internal	 consistency.	 Indeed,	a	
future	in	which	offshore	wind	would	be	more	expensive	than	expected	and	onshore	wind	cheaper	than	
expected	 (or	 vice-versa)	 is	 not	 realistic,	 so	 we	 select	 only	 the	 scenarios	 in	 which	 the	 costs	 of	 these	
technologies	 can	only	differ	by	25%	at	most.	This	 leads	 to	seven	different	offshore	and	onshore	wind	
power	 cost	 scenario	 combinations.	 Multiplying	 by	 five	 solar	 power	 cost	 scenarios	 and	 three	 cost	
scenarios	for	each	storage	technology	(7×5Z×3|),	we	obtain	315	future	cost	scenarios.	

Our	 results	 indicate	 that	 the	optimal	energy	mix	 is	highly	 sensitive	 to	 cost	uncertainty.	Offshore	wind	
often	reaches	either	zero	installed	capacity	or	the	maximum	allowed	value,	while	the	range	of	onshore	
wind	 and	 PV	 capacities	 is	 approximately	 five-fold	 across	 the	 cost	 scenarios	 (Figure	 3a).	 Storage	
technologies	also	demonstrate	such	high	sensitivity	with	the	exception	of	PHS	whose	capacity	is	always	
fixed	by	the	maximum	allowed	value.	Battery	capacity	ranges	from	7.6	to	more	than	279	K"ℎ#,	nearly	
four	times	the	capacity	 in	the	reference	cost	scenario	(Figure	3d1),	and	methanation	ranges	from	7	to	
33.5	("ℎ,	more	than	twice	the	capacity	in	the	reference	cost	scenario	(Figure	3d2).	

This	 analysis	 also	 highlights	 some	 patterns	 of	 substitutability	 and	 complementarity	 between	
technologies.	Obviously,	each	option	 is	particularly	 influenced	by	 its	own	cost,	but	also	by	 the	cost	of	
other	 technologies.	 In	 particular,	 a	 higher	 cost	 of	methanation	 entails	much	more	 offshore	wind	 and	
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vice-versa.	 Indeed,	 electricity	 from	offshore	wind	 suffers	 from	 a	 higher	 LCOE	 than	 other	 VREs	 but	 its	
production	 is	 more	 stable,	 generating	 less	 need	 for	 storage.	 Conversely	 a	 higher	 cost	 of	 batteries	
reduces	solar	capacity:	batteries	are	especially	interesting	when	energy	must	be	stored	for	a	few	hours,	
so	they	complement	solar	technology.		

Finally,	 the	 system	 LCOE	 and	 the	 average	 power	 price	 are	 much	 more	 influenced	 by	 the	 cost	 of	
generation	 technologies	 than	by	 that	of	 storage	 technologies1;	Keeping	 the	 reference	 investment	cost	
scenario	for	power	production	technologies,	changing	the	investment	cost	of	battery	and	methanation	
storage	options	 from	 the	 lowest	 storage	 investment	 cost	 scenario	 (both	 -50%)	 to	 the	highest	 storage	
investment	cost	 scenario	 (both	+50%)	changes	 the	overall	 system	LCOE	 from	€46/MWh	to	€51/MWh,	
while	changing	the	 investment	cost	of	 three	VRE	power	production	technologies	 from	the	 lowest	cost	
scenario	to	the	highest	cost	one	(keeping	the	storage	options	at	the	reference	cost	scenario),	changes	
the	overall	system	LCOE	from	€37/MWh	to	58€/MWh.	

	

																																																													

1	 Schlachtberger	 et	 al.	 (2018)	 find	 nearly	 no	 effect	 of	 storage	 cost	 variation	 on	 the	 final	 cost	 of	 the	 electricity	
system,	which	is	in	accordance	with	our	conclusions.	
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Figure	3	Optimization	results	over	the	315	future	cost	projection	scenarios.	(a)	power	production	and	(b)	installed	capacity	of	
each	VRE	resource;	(c)	load	curtailment	and	storage	losses;	(d)	needed	storage	volume	in	GWhe	for	batteries	and	pumped	hydro	

storage	(d1)	and	in	TWhe	for	methanation	(d2);	(e)	system	LCOE	in	€/MWhe;	(f)	average	power	price	in	€/MWhe.	The	green	point	

shows	the	reference	cost	scenario.	The	colored	lines	beside	whisker	plots	show	the	impact	of	varying	separately	the	cost	of	one	

technology,	keeping	all	other	technologies	at	their	reference	cost.	

3.2 However,	setting	a	capacity	mix	in	advance	hardly	increases	costs	

Globally,	the	previous	cost	sensitivity	analysis	confirms	that	the	optimal	power	mix	is	highly	sensitive	to	
technology	costs.	Thus,	a	decision	maker	might	be	tempted	to	favor	a	flexible	policy	over	a	more	rigid	
one,	at	the	expense	of	visibility	for	investors.	However,	a	high	cost	sensitivity	of	the	optimal	power	mix	
does	 not	 imply	 a	 high	 cost	 for	 choosing	 a	 non-optimal	 mix.	 In	 the	 case	 of	 highly	 substitutable	
technologies,	a	small	change	in	cost	will	lead	to	a	strong	shift	in	the	optimal	mix,	but	choosing	one	mix	
or	the	other	would	not	change	total	cost	much.	

The	 question	we	 aim	 to	 answer	 in	 this	 subsection	 is	 the	 following:	 “If	we	 decide	 now	a	 trajectory	 of	
renewable	capacities	 for	 the	 future	based	on	current	cost	estimates,	could	 it	entail	a	high	over-cost	 if	
our	 assumptions	 of	 technology	 costs	 are	 wrong”?	 To	 answer	 that	 question,	 we	 use	 the	 installed	
capacities	 of	 generation	 and	 storage	 technologies	 optimized	 for	 the	 reference	 cost	 scenario,	 and	we	
calculate	the	system	LCOE	for	this	“rigid	capacity”	across	our	315	cost	scenarios	(Figure	4).	The	system	
LCOE	 is	 necessarily	 equal	 to	 or	 higher	 than	 that	 of	 the	 “flexible	 capacity”,	 the	 difference	 being	 the	
“regret”	from	basing	the	optimization	on	the	wrong	cost	assumptions.		

In	 most	 cases	 the	 regret	 is	 remarkably	 low	 given	 the	 wide	 range	 of	 cost	 scenarios	 considered:	 the	
average	value	 is	4%	 i.e.	€2/="ℎ#,	 the	 third	quartile	 is	6%,	and	 the	 regret	 is	below	9%	 in	95%	of	 the	
scenarios.	 A	 close	 examination	 of	 the	 14	 cost	 scenarios	 with	 the	 largest	 regret	 (more	 than	 2	 billion	
€/year,	 i.e.	 around	 10%)	 shows	 that	 all	 but	 one	 concern	 scenarios	 in	 which	 the	 cost	 of	 onshore	 or	
offshore	wind,	 or	 both,	 is	 lower	 than	 expected.	 Hence	 the	 regret	 in	 this	 scenario	 stems	 from	 having	
installed	 too	 little	 windpower.	 The	 only	 exception	 is	 a	 scenario	 in	 which	 PV	 and	 batteries	 are	 50%	
cheaper	 than	 in	 the	 reference	 scenario,	 onshore	 at	 the	 reference	 cost,	 offshore	 25%	 cheaper	 and	
methanation	50%	more	expensive.	In	this	case	only,	the	regret	stems	from	having	not	installed	enough	
PV	and	batteries.	

The	average	system	LCOE	for	the	rigid	capacity	(black	vertical	 line	 in	Figure	4)	equals	the	system	LCOE	
under	 the	 reference	 cost	 scenario	 (red	 vertical	 dashed	 line).	 This	 result	 is	 due	 to	 the	 symmetric	
distribution	of	 technology	 cost	 shocks	 and	 the	 linear	 nature	of	 the	model,	 and	 can	be	understood	 as	
follows:	starting	from	the	system	optimized	over	the	reference	cost	scenario,	a	technology	cost	shock	by	
+25%	entails	a	decrease	 in	system	LCOE	by	 the	same	amount	 (in	absolute	value)	as	a	 technology	cost	
shock	by	-25%,	so	the	average	system	LCOE	is	the	same	as	the	one	without	uncertainty.	
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Figure	4	Distribution	of	system	LCOE	across	cost	scenarios.	The	red	distribution	represents	optimal	energy	mixes;	the	green	

distribution	is	computed	using	the	capacities	of	the	reference	scenario.	

	

3.3 Sensitivity	to	weather	data	

Testing	weather	sensitivity	

To	test	how	the	optimal	mix	of	variable	renewables	varies	for	different	weather-years,	we	ran	the	model	
for	each	year	from	2000	to	2017	(henceforth	“weather-years”).		

Our	results	show	that	the	optimal	power	mix	varies	significantly	from	one	year	to	another,	both	in	terms	
of	electricity	production,	 installed	capacity,	 storage	volume	and	storage	capacity	 (Figures	5	and	6	and	
Appendix	3).	The	 largest	variations	between	minimum	and	maximum	 installed	capacity	are	associated	
with	 onshore	 and	 offshore	 wind	 power.	 In	 particular,	 offshore	 capacity	 ranges	 from	 zero	 to	 20	 GW,	



	

	

20	

	

which	 is	 the	maximum	value	 allowed1.	High	 values	 for	offshore	wind	are	 reached	either	 for	weather-
years	with	a	high	capacity	factor	for	offshore	wind	(as	in	2015)	or	for	weather-years	with	a	low	capacity	
factor	 for	 onshore	wind	 (as	 in	 2016).	 In	 comparison,	 installed	 solar	 capacity	 is	more	 stable	 (between	
100.5GW	 and	 122.2GW),	 due	 to	 a	 less	 volatile	 capacity	 factor	 (Figure	 6c).	 Biogas	 always	 reaches	 the	
maximum	 allowed	 power	 generation	 and	 hydro	 the	 maximum	 allowed	 capacity.	 As	 far	 as	 storage	
capacity	 is	 concerned,	 pumped	 hydro	 storage	 (PHS)	 also	 always	 reaches	 its	 maximum	 value	 while	
batteries	 and	methanation	 vary	 a	 lot	 across	weather-years	 (Figures	 6d1	 and	6d2).	 In	 comparison,	 the	
system	LCOE	and	average	power	price	(the	dual	variable	of	the	adequacy	constraint,	i.e.	equation	3),	as	
well	as	the	sum	of	VRE	curtailment	and	storage	losses	are	much	more	stable	(Figures	6e	and	6f).	

	

	

Figure	5	VRE	generation	mix	for	each	weather-year	in	single-year	optimization	and	over	the	whole	18-year	long	period	

	

																																																													

1	Maximum	values	are	not	binding	for	solar	PV	and	onshore	wind.	
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These	 results	 show	 that	 if	 the	 aim	 is	 to	 find	 an	optimal	 energy	mix,	 running	 a	model	 on	 a	 randomly-
chosen	weather-year	can	be	very	misleading.	The	optimal	mix	of	 renewables	 is	highly	 sensitive	 to	 the	
chosen	weather-year.	This	conclusion	is	consistent	with	those	of	Collins	et	al.	(2018)	and	Zeyringer	et	al.	
(2018).	 As	 the	weather	 of	 future	 years	 cannot	 be	 predicted,	 the	 best	 approach	would	 be	 to	 run	 the	
model	over	several	weather-years,	as	in	our	18-year	simulation.		

However,	the	drawback	 is	a	much	longer	optimization	time,	which	prevents	us	from	doing	this	for	the	
315	 cost	 scenarios	used	 in	our	 sensitivity	 analysis.	Hence	we	have	 chosen	another	 approach:	 select	 a	
representative	year	that	gives	the	results	closest	to	the	results	when	optimizing	over	18	years.	

Selecting	a	representative	year	

The	selection	of	a	representative	year	could	be	made	using	several	criteria.	We	chose	to	select	the	year	
with	 a	 capacity	 factor	 closest	 to	 our	 18-year	 optimal	 mix.	We	 used	 the	 capacity	 factor	 because	 it	 is	
invariable	with	 respect	 to	 technology	costs,	on	which	we	perform	the	sensitivity	analysis.	To	measure	
the	distance	to	the	18-year	optimal	mix,	we	compute	the	sum	of	absolute	difference1	of	the	three	VREs.	
Using	this	approach,	2006	is	the	closest	year	to	the	overall	18-year	long	period,	with	a	sum	of	absolute	
error	values	of	1.5%	(Table	A.4).	We	launched	the	model	with	the	optimal	installed	capacities	found	for	
2006	 over	 all	 other	weather-years	 to	 test	 the	 adequacy	 of	 this	 installed	 capacity	with	 respect	 to	 the	
other	17	weather-years,	and	we	did	not	observe	any	operational	inadequacy.			

																																																													

1	Sum	of	normalized	absolute	differences	 /éâ/
∗
é

/∗é

ê
\yZ 	where	H\	is	the	CF	of	each	technology	4	in	each	year	and	H∗\	

is	the	CF	of	that	technology	over	18	years.	
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Figure	6.	Optimization	results	for	each	weather-year	from	2000	to	2017	and	for	the	whole	18-year	period.	(a)	power	production;	

(b)	installed	capacity;	(c)	average	capacity	factor	of	each	VRE	and	the	gas	power	plant	for	biogas	produced	by	anaerobic	
digestion	and	methane	produced	by	methanation	and	(d)	system	LCOE	and	average	power	price	of	electricity.	The	green	dot	

shows	the	results	of	the	optimization	over	the	18-year	period	and	the	red	dot	the	results	for	weather-year	2006.	The	box	plots	

show	the	first	and	third	quartiles	and	the	median	for	each	scenario.	

Figure	 7	 shows	 the	 energy	 mix	 of	 the	 chosen	 representative	 year	 (2006)	 and	 the	 whole	 18-year	
modelling.	There	is	a	very	close	match	between	the	percentage	of	each	energy	source	for	the	overall	18-
year-long	optimization	and	the	representative	year.	Onshore	wind	power	is	clearly	dominant	with	solar	
power	and	offshore	wind	power	as	the	second-	and	third-	biggest	sources	of	energy	respectively.		

	

Figure	7:	Energy	mix	for	the	chosen	representative	weather-year	(2006,	left)	and	for	the	18-year	optimization	(right)	
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4 Discussion	&	Conclusion	
4.1 Comparison	with	existing	studies	

Some	authors	have	argued	that	the	storage	facilities	required	for	a	fully	renewable	power	system	would	
massively	increase	the	power	system	cost	(e.g.	Sinn,	2017,	whose	conclusions	have	been	challenged	by	
Zerrahn	et	al.,	2018).		In	our	reference	cost	scenario,	storage	(batteries,	PHS	and	methanation)	accounts	
for	only	14.5%	of	the	system	cost,	vs.	85.5%	for	electricity	generation	(Appendix	6).	Moreover,	we	have	
seen	that	the	system	LCOE	is	much	more	robust	to	the	cost	of	the	storage	technologies	than	to	that	of	
PV	and	wind.	Hence	the	importance	of	the	storage	cost	should	not	be	overemphasized.		

The	 system	 LCOE	 for	 power	 generation	 and	 storage	 ranges	 from	 €36	 to	 €65/="ℎ#,	 depending	 on	
technology	 costs,	 with	 an	 expected	 value	 between	 €50	 and	 €52/="ℎ#,	 depending	 on	 whether	 the	
power	system	is	optimized	before	or	after	the	arrival	of	information	about	technology	costs.	According	
to	the	latest	quarterly	report	from	the	French	energy	regulator	(CRE,	2018),	35%	of	a	typical	electricity	
bill	 represents	 electricity	 production,	 hence	 from	 a	 bill	 varying	 between	 €160	 and	 €170/="ℎ#,	 €56-
€60/="ℎ# 	represents	production.	Hence	the	cost	of	a	100%	renewable	electricity	system	for	France	in	
2050	would	be	lower	than	or	similar	to	that	of	the	current	power	system.		

These	results	contrast	with	those	of	Krakowski	et	al.	 (2016)	who	find	an	annualized	cost	of	more	than	
€60	bn/yr.	 in	their	scenario	100RES2050	(cf.	 their	Fig.	23)	vs.	€21	bn/yr.	 in	ours.	The	explanation	does	
not	 stem	 from	 their	 investment	 cost	 assumptions,	 which	 are	 similar	 to	 ours	 (cf.	 their	 Table	 1).	 One	
explanation	might	 be	 that	 they	 take	 a	 higher	 discount	 rate,	 but	 they	do	not	 disclose	 it	 so	we	 cannot	
verify	this	hypothesis.	Partial	explanations	are	(i)	a	slightly	higher	power	demand	(cf.	their	Fig.	7:	about	
460	("ℎ#/yr.	 vs.	 422);	 (ii)	 a	 slightly	 lower	 capacity	 factor	 for	 onshore	wind	 (28%)	 and	offshore	wind	
(50%);	 (iii)	 the	 fact	 that	 they	 assume	 a	 perfect	 correlation	 between	 onshore	 and	 offshore	 wind	
production,	which	 artificially	 limits	 the	 complementarity	 between	 these	 technologies.	Moreover,	 they	
base	their	wind	production	profiles	on	observed	power	generation	in	2012,	which	neglects	the	fact	that	
advanced	 turbines	 generate	 electricity	 more	 constantly	 than	 those	 installed	 in	 the	 past	 (Hirth	 and	
Müller,	2016).		

Villavicencio	 (2017),	who	 does	 not	 specify	 the	 time	 horizon	 considered,	 finds	 even	 higher	 annualized	
cost:	more	than	€180	bn/yr.	for	100%	renewables,	i.e.	more	than	8	times	our	result.	Several	factors	may	
explain	this	huge	difference.	First,	he	takes	a	real	discount	rate	of	7%/yr.	This	is	much	higher	than	ours,	
which	corresponds	to	the	rate	recommended	for	socio-economic	analysis	in	France	(4.5%).	Second,	his	
investment	cost	 for	PV	 is	much	higher	than	ours:	€3.6/"#,	while	the	current	 investment	cost	at	utility	
scale	is	around	$1/"# 	(Lazard,	2018).	This	explains	why	PV	does	not	appear	in	his	reference	scenario	(F1)	
with	100%	renewables.	Third,	total	demand	is	higher	than	ours	(512	("ℎ# 	vs.	422("ℎ#).	

To	sum	up,	while	our	results	point	to	a	much	lower	system	cost	than	the	two	above-mentioned	studies	
modeling	a	100%	renewable	system	for	France,	there	are	good	reasons	to	conclude	that	the	system	cost	
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for	 2050	will	 be	 lower	 than	 that	 estimated	 by	 these	 studies.	 In	 the	 remainder	 of	 this	 subsection,	we	
address	several	factors	in	turn	which	could	push	our	estimates	up	or	down.	

4.2 Model	limitations		

Factors	which	could	push	costs	up		

	Cost	of	the	transmission	and	distribution	network	

Our	system	LCOE	includes	storage	and	connection	of	power	generation	to	the	grid,	but	not	the	cost	of	
the	transmission	and	distribution	network.	Currently	this	cost	accounts	for	27%	of	the	typical	electricity	
bill,	i.e.	about	€45/="ℎ#.	Calculating	this	cost	for	the	various	power	systems	considered	in	the	present	
study	would	exceed	 the	 scope	of	 the	present	article,	but	 several	 recent	 studies	 indicate	 that	 the	cost	
differential	across	scenarios	featuring	greater	or	lesser	percentage	of	renewables	would	be	limited.	

• According	 to	 the	 RTE	 systems	 and	 network	 perspectives	 study	 (2018),	 for	 a	 71%	 renewable	
electricity	mix	(the	so-called	Watt	scenario	for	2035)	in	France,	the	extra	network	costs	would	be	in	
the	order	of	€1	bn/yr.,	 less	 than	5%	of	 the	 total	production	cost.	However,	 the	relationship	 is	not	
linear	and	it	cannot	be	easily	extrapolated	for	higher	proportions	of	renewables.		

• According	to	two	studies	by	ADEME	(2015,	2018),	the	cost	of	renovating	the	French	network,	which	
is	planned	 to	 take	place	before	2030,	will	be	at	 least	one	order	of	magnitude	more	 than	 the	cost	
required	to	strengthen	the	grid	for	a	fully	renewable	power	network.		

• According	to	EirGrid1	(the	Irish	electricity	network	operator),	for	an	electricity	mix	with	nearly	90%	
of	renewables,	the	reinforcement	required	to	integrate	VREs	will	cost	no	more	than	€1/="ℎ#.		

Acceptability	of	wind	power	

Our	optimal	scenario	corresponding	to	the	reference	technology	costs	includes	about	80	GW	of	onshore	
wind,	12	GW	of	offshore	wind	and	110	GW	of	PV.	The	availability	of	land	for	PV	does	not	appear	to	be	
problematical	 since	 the	 amount	 of	 suitable	 land	 is	 much	 higher	 than	 required	 (Cerema,	 2017).	 For	
offshore	 wind,	 WindEurope’s	 “high”	 scenario	 for	 2030	 forecasts	 11	 GW,	 roughly	 equivalent	 to	 our	
optimal	 scenario	 corresponding	 to	 the	 reference	 technology	 costs.	 Here	 again,	 reaching	 this	 capacity	
does	not	seem	problematical.	

For	onshore	wind,	WindEurope’s	(2017)	“high”	scenario	forecasts	41	GW	in	2030,	vs.	14	in	2018,	i.e.	an	
increase	of	2.2	GW/yr.	on	average.	Reaching	80	GW	in	2050	means	an	increase	of	2	GW/yr.	on	average,	
from	2018	onwards,	a	bit	less	than	WindEurope’s	“high”	scenario,	but	almost	twice	the	current	rate	of	

																																																													

1	http://www.eirgridgroup.com/newsroom/record-renewable-energy-o/index.xml	
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increase.	Sustaining	such	a	high	rate	of	increase	requires	a	high	degree	of	political	determination,	given	
the	current	opposition	faced	by	many	wind	projects	in	France.	

Discount	rate	

Some	studies	use	higher	discount	rates	than	ours,	e.g.	7%	in	Villavicencio	(2017),	as	mentioned	above.	
This	would	increase	the	annualized	LCOE,	and	especially	the	cost	of	capital-intensive	technologies.	While	
higher	 rates	may	well	be	used	by	private	companies,	4.5%	 is	already	much	higher	 than	both	the	rate-
free	 real	 interest	 rate	 available	 on	 financial	 markets,	 and	 expected	 GDP	 growth	 over	 the	 next	 few	
decades.	 Using	 a	 higher	 rate	 in	 a	 socioeconomic	 analysis	 means	 than	 future	 generations	 would	 be	
penalized	when	compared	to	current	ones,	which	can	hardly	be	defended	on	ethical	grounds.	

Perfect	weather	forecasts	

Our	 optimization	 has	 been	 conducted	 on	 the	 assumption	 that	 the	 weather	 is	 known	 for	 the	 whole	
period.	With	 imperfect	 weather	 forecasts,	 the	 cost	 would	 be	 higher,	 but	 such	 an	 optimization	 for	 a	
country-scale	 system	 would	 be	 computationally	 challenging.	 Gowrisankaran	 et	 al.	 (2016)	 have	
performed	such	an	optimization	 just	 for	solar	energy,	on	a	 limited	geographical	scale,	and	have	found	
that	“intermittency	overall	 is	quantitatively	much	more	 important	 than	unforecastable	 intermittency.”	
However,	whether	this	conclusion	would	hold	for	a	complex,	multi-energy	system	is	an	open	question.	

Factors	which	could	bring	costs	down		

Demand-side	management	

Our	 model	 does	 not	 feature	 price-elastic	 electricity	 demand	 or	 flexibility	 in	 the	 power	 consumption	
profile,	because	this	would	have	required	debatable	assumptions.	Moreover,	the	demand	profile,	taken	
from	ADEME	(2015),	is	already	flatter	than	the	current	one.	Including	these	features	would	reduce	the	
need	for	storage	and	the	related	energy	losses.	

Interconnection	with	neighboring	countries	

Many	studies	have	shown	that	interconnections	with	neighboring	countries	can	significantly	reduce	the	
cost	of	a	fully	renewable	system.	For	instance,	Annan-Phan	and	Roques	(2018)	have	shown	that	power	
price	volatility	can	be	reduced	by	cross-border	exchanges	with	neighboring	countries.	Indeed,	this	leads	
to	 benefits	 from	 the	 differences	 both	 in	 climatic	 and	 weather	 conditions	 between	 the	 countries	
concerned.	



	

	

26	

	

Spatial	optimization	of	renewable	energy	capacities	

As	mentioned	 above,	 we	 do	 not	 optimize	 the	 quantity	 of	 renewables	 at	 every	 location	 but	 only	 the	
aggregate	 capacity,	which	 is	 thus	 scaled	up	 compared	 to	 the	value	observed	 in	2017.	A	 lower	 system	
cost	would	be	obtained	by	optimizing	their	location,	which	would	presumably	lead	to	greater	capacity	in	
windier	 or	 sunnier	 locations,	 although	 this	 effect	would	 be	mitigated	 by	 the	 need	 to	 obtain	 a	 flatter	
aggregate	generation	profile.	Yet	this	would	make	the	model	computationally	intractable	and	might	lead	
to	unrealistic	concentrations	of	onshore	wind	in	some	locations.		

Neither	vehicle-to-grid	nor	second-hand	batteries	

We	have	not	considered	vehicle-to-grid	i.e.	the	possibility	that	electric	vehicle	batteries	could	be	used	to	
provide	flexibility	in	the	electricity	system.	Yet	the	storage	capacity	of	electric	vehicles	may	be	huge	by	
2050:	The	French	TSO	RTE	 (2018)	estimates	 it	at	900	("ℎ#,	about	 ten	times	the	battery	capacities	 in	
our	reference	cost	scenario.	Mobilizing	even	a	small	part	of	this	capacity	for	power	storage	would	bring	
down	the	system	LCOE,	but	we	have	preferred	not	to	include	this	option	because	the	impact	on	battery	
lifetime	is	still	being	debated.	Another	possibility	is	to	recycle	used	car	batteries	as	stationary	batteries,	
but	 again,	 we	 believe	 that	 modeling	 this	 option	 would	 require	 precise	 assumptions	 on	 battery	
degradation.	

	

4.3 Conclusion	

In	this	article,	we	have	studied	the	sensitivity	of	optimal	fully	renewable	power	systems	to	technology	
cost.	To	that	end,	we	have	developed	EOLES,	a	model	optimizing	investment	and	dispatch	in	the	power	
sector,	 and	 applied	 it	 to	 the	 study	 of	 fully	 renewable	 power	 systems	 in	 France.	 We	 built	 315	 cost	
scenarios	by	combining	assumptions	about	the	long-term	cost	of	the	key	power	generation	and	storage	
technologies.	

Our	results	indicate	that	even	though	the	technologies	involved	in	a	fully	renewable	power	system	are	
very	 different,	 they	 are	 by	 and	 large	 substitutable.	 For	 instance,	 if	 batteries	 are	 50%	more	 expensive	
than	expected,	the	optimal	energy	mix	includes	fewer	batteries	and	less	PV,	but	this	is	compensated	for	
by	 additional	 wind	 power,	 with	 a	 very	 limited	 impact	 on	 the	 system	 LCOE.	 On	 the	 contrary,	 if	 wind	
power	is	25%	more	expensive	than	expected,	the	optimal	mix	obviously	includes	less	of	this	technology,	
but	this	is	compensated	for	by	more	PV	and	storage.		

Overall,	 the	 impact	 of	 storage	 cost	 should	 not	 be	 overestimated:	 	 even	 in	 a	 100%	 renewable	 power	
system,	storage	(batteries,	PHS	and	methanation)	accounts	for	only	14.5%	of	the	system	cost,	vs.	85.5%	
for	electricity	generation.	Were	our	model	to	include	demand-side	management,	interconnections	with	
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neighboring	 countries,	 vehicle-to-grid	 or	 second-hand	 batteries,	 the	 share	 of	 storage	 in	 overall	 cost	
would	be	even	lower.	

Across	 all	 cost	 scenarios,	 the	 system	 LCOE,	 including	 generation	 and	 storage,	 ranges	 from	 €36.5	 to	
€65.5/="ℎ#,	 depending	 on	 the	 cost	 scenario,	 with	 an	 average	 value	 of	 €50/="ℎ#.	 This	 is	 cheaper	
than	today’s	value.	And	setting	a	capacity	 target	 in	advance	 for	every	 technology	would	only	 increase	
the	system	LCOE	by	€2/MWh	averaged	over	the	315	cost	scenarios	compared	to	the	optimum	mix,	even	
if	costs	vary	by	+/-25%	for	wind	and	+/-50%	for	solar	and	storage.	 In	terms	of	policy	 implications,	 this	
result	calls	for	providing	visibility	to	investors,	even	if	it	entails	reducing	flexibility	the	policy	design.		

Finally,	 our	 analysis	 shows	 that	 the	optimal	power	mix	 is	 highly	 sensitive	 to	 the	 chosen	weather-year	
and	 to	 the	 cost	 assumptions.	 In	 the	 literature,	 many	 analyses	 of	 the	 power	mix	 are	 still	 based	 on	 a	
unique	weather-year,	 chosen	 for	data	availability	 rather	 than	 representativeness.	Our	 result	 thus	calls	
for	caution	over	such	conclusions	on	the	optimal	power	mix,	when	they	are	based	on	a	limited	number	
of	weather-years	or	cost	scenarios.		

This	 work	 could	 be	 extended	 in	 many	 directions,	 for	 example	 including	 the	 other	 power	 generation	
technologies	 that	 entail	 low	 direct	 CO2	 emissions:	 CO2	 capture	 and	 storage	 and	 nuclear	 power.	 Their	
cost	and	the	possibility	of	storing	massive	quantities	of	CO2	being	very	uncertain	in	the	French	context,	
we	decided	not	to	include	them	in	the	present	study,	but	they	could	be	considered	in	future	work.		 	
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Appendix	1.	Additional	information	on	the	JRC	2017	study	

In	this	JRC	report,	historic	 installed	capacity	of	each	technology	for	2015,	 learning	rate	related	to	each	
technology	and	the	capital	investment	cost	of	each	technology	in	2015	has	been	taken	as	input	values,	
and	using	three	different	future	installed	capacity	scenarios,	three	different	future	cost	trajectories	are	
proposed.	 Equation	 (A1)	 shows	 the	main	methodology	 used	 in	 the	 cost	 projection	 using	 the	 learning	
rate	method:	

%ëI5+ 	= 	 %ëI5z ∙ 	
Ç_
Çì

î
		 (A1)	

This	 log-linear	 relation	 relates	 the	 future	 cost	 (%ëI5+)	 of	 a	 technology	 to	 the	 existing	 cost	 (%ëI5z),	
existing	installed	capacity	(%z)	and	the	future	projected	installed	capacity	(%+)	of	it	using	the	experience	
parameter	i.	The	learning	rate	LR	 is	related	to	the	experience	parameter	as	it	 is	described	in	equation	
(A2);	

;U = 1 −	2î 	 	 (A2)	

The	JRC	report	uses	three	different	scenarios	to	project	the	future	installed	capacity	of	each	technology,	

and	finally	to	find	the	Ç_
Çì
	ratio	for	the	equation	(16).	These	three	scenarios	are	described	in	Table	A-1;	

Table	A-1	the	chosen	scenarios	by	JRC	for	the	2050	cost	projections	of	low	carbon	power	production	technologies	

Scenario	 	
Baseline	 This	 scenario	 is	 used	 to	 cover	 the	 lower	 end	 of	 RES-E	 deployment.	 It	 is	 based	 on	 the	

"6DS"	 scenario	 of	 the	 Energy	 Technology	 Perspectives	 published	 by	 the	 International	
Energy	Agency	in	2016.	It	represents	a	"business	as	usual"	world	in	which	no	additional	
efforts	are	 taken	on	stabilizing	 the	atmospheric	concentration	of	greenhouse	gases.	By	
2050,	 primary	 energy	 consumption	 reaches	 about	 940	 EJ,	 renewable	 energy	 supplies	
about	30	%	of	global	electricity	demand	and	emissions	climb	to	55	GtCO2.	

Diversified	 The	 "Diversified"	 portfolio	 scenario	 is	 taken	 from	 the	 "B2DS"	 scenario	 of	 the	
International	 Energy	 Agency's	 2017	 Energy	 Technology	 Perspectives	 and	 is	 used	 as	
representative	 for	 the	mid-range	 deployment	 of	 RES-E	 found	 in	 literature.	 To	 achieve	
rapid	decarbonization	in	line	with	international	policy	goals,	all	known	supply,	efficiency	
and	mitigation	options	are	available	and	pushed	to	their	practical	limits.	Fossil	fuels	and	
nuclear	 energy	 participate	 in	 the	 technology	 mix,	 and	 CCS	 is	 a	 key	 option	 to	 realize	
emission	 reduction	 goals.	 Primary	 energy	 consumption	 is	 comparable	 to	 2015	 levels	
(about	580	EJ),	the	share	of	renewable	electricity	in	the	global	supply	mix	is	74	%	while	
emissions	decline	to	about	4.7	GtCO2	by	2050.	

ProRES	 The	"ProRES"	scenario	 results	are	 the	most	ambitious	 in	 terms	of	capacity	additions	of	
RES-E	 technologies.	 In	 this	 scenario	 the	 world	 moves	 towards	 decarbonization	 by	
significantly	reducing	fossil	fuel	use,	however,	in	parallel	with	rapid	phase	out	of	nuclear	
power.	CCS	does	not	become	commercial	and	is	not	an	available	mitigation	option.	Deep	
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emission	reduction	is	achieved	with	high	deployment	of	RES,	electrification	of	transport	
and	heat,	and	high	efficiency	gains.	It	is	based	on	the	2015	"Energy	Revolution"	scenario	
of	Greenpeace.	Primary	energy	consumption	is	about	430	EJ,	renewables	supply	93	%	of	
electricity	demand	and	global	CO2	emissions	are	about	4.5	GtCO2	in	2050.	

	
The	 used	 economical	 parameters	 for	 the	 power	 production	 technologies	 are	 taken	 from	 the	 2050	
projections	of	this	study	for	the	diversified	scenario	as	an	average	and	more	realistic	scenario.		
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Appendix	2.	Wind	and	solar	production	profiles	

The	wind	power	hourly	capacity	factor	profiles	existing	in	the	renewables.ninja	website	are	prepared	in	
four	stages:		

a)	Raw	data	selection;	using	NASA’s	MERRA-2	data	reanalysis	with	a	spatial	resolution	of	60km×70km	
provided	by	Rienecker	et	al.	(2011),	
b)	Downscaling	the	wind	speeds	to	the	wind	farms;	by	interpolating	the	specific	geographic	coordinates	
of	each	wind	farm	using	LOESS	regression,		
c)	Calculation	of	hub	height	wind	speed;	by	extrapolating	the	wind	speed	in	available	altitudes	(2,	10	and	
50	meters)	to	the	hub	height	of	the	wind	turbines	using	logarithm	profile	law,		
d)	Power	conversion;	using	the	primary	data	from	Pierrot	(2018),	the	power	curves	are	built	(with	
respect	to	the	chosen	wind	turbine),	and	smoothed	to	represent	a	farm	of	several	geographically	
dispersed	turbines	using	Gaussian	filter.	

The	solar	power	hourly	capacity	factor	profiles	in	the	renewables.ninja	website	are	prepared	in	three	
stages:	

a)	Raw	data	calculation	and	treatment;	using	NASA’s	MERRA	data	with	the	spatial	resolution	of	
50km×50km.	The	diffuse	irradiance	fraction	estimated	with	Bayesian	statistical	analysis	introduced	by	
Lauret	et	al.	(2013)	and	the	global	irradiation	calculated	in	inclined	plane.	The	temperature	is	given	at	
2m	altitude	by	MERRA	data	set.		
b)	Downscaling	of	solar	radiation	to	farm	level;	values	are	linearly	interpolated	from	grid	cells	to	the	
given	coordinates.	
c)	Power	conversion	model;	Power	output	of	a	panel	is	calculated	using	the	relative	PV	performance	
model	by	Huld	et	al.	(2010)	which	gives	temperature	dependent	panel	efficiency	curves.	
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Appendix	3.	Weather	year	sensitivity	

The	results	for	each	weather	year	can	be	seen	in	Tables	A.1	and	A.2,	A.3.	

Table	A.1	installed	capacity	of	each	power	production	technology	in	GWe	and	energy	storage	capacity	of	each	storage	

technology	during	each	optimization	period	

Year	 Offsho
re	
Wind	

Onshor
e	Wind	

Solar	
PV	

Run-of-
river	

Lake	 &	
reservoi
r	

Bioga
s	

Battery	
(GWh)	

PHS	
(GWh
)	

Methanatio
n	(TWh)	

2000	 11.46	 84.14	 105.74	 7.50	 13.00	 18.24	 60.17	 180	 5.52	
2001	 0.38	 104.62	 101.16	 7.50	 13.00	 28.61	 41.91	 180	 8.45	
2002	 17.12	 69.66	 105.55	 7.50	 13.00	 19.16	 74.70	 180	 4.60	
2003	 10.21	 90.15	 106.83	 7.50	 13.00	 25.70	 62.78	 180	 5.52	
2004	 0.00	 105.29	 113.38	 7.50	 13.00	 21.88	 70.32	 180	 15.30	
2005	 0.00	 105.89	 110.38	 7.50	 13.00	 25.22	 60.27	 180	 9.37	
2006	 12.36	 80.08	 122.17	 7.50	 13.00	 32.89	 74.62	 180	 12.90	
2007	 0.00	 98.40	 118.33	 7.50	 13.00	 27.61	 65.73	 180	 12.05	
2008	 0.78	 101.95	 105.20	 7.50	 13.00	 21.76	 52.03	 180	 12.05	
2009	 11.61	 89.32	 107.79	 7.50	 13.00	 18.83	 51.47	 180	 6.92	
2010	 20.00	 83.64	 100.50	 7.50	 13.00	 22.88	 40.53	 180	 15.81	
2011	 20.00	 65.81	 114.17	 7.50	 13.00	 28.32	 101.33	 180	 8.54	
2012	 0.00	 103.38	 114.49	 7.50	 13.00	 20.36	 62.43	 180	 11.32	
2013	 10.32	 92.30	 100.82	 7.50	 13.00	 21.54	 37.06	 180	 10.59	
2014	 20.00	 70.23	 111.40	 7.50	 13.00	 18.57	 80.03	 180	 7.69	
2015	 20.00	 64.77	 103.78	 7.50	 13.00	 34.09	 63.19	 180	 8.22	
2016	 20.00	 69.77	 114.07	 7.50	 13.00	 23.96	 81.68	 180	 8.66	
2017	 5.29	 100.72	 111.62	 7.50	 13.00	 19.30	 50.05	 180	 11.77	
Mean	 9.97	 87.78	 109.30	 7.50	 13.00	 23.83	 62.79	 180	 7.74	
All	 11.77	 83.30	 112.21	 7.50	 13.00	 33.25	 66.71	 180	 16	

	

Table	A.2	Yearly	power	production	of	each	production	technology	(in	TWh)	and	capacity	factor	of	VRE	resources	

Year	 Offshore	
Wind		

Onshore	
Wind	

Solar	
PV	

Run-of-
river	

Lake		 Biogas	 Offshore	
Wind	

Onshore	
Wind	

Solar	
PV	

OCGT	
plant	

2000	 54.08	 246.41	 146.58	 29.19	 15.82	 15	 0.538	 0.334	 0.158	 0.139	
2001	 1.77	 307.32	 143.64	 29.19	 15.82	 15	 0.537	 0.335	 0.162	 0.089	
2002	 82.05	 212.44	 145.52	 29.19	 15.82	 15	 0.547	 0.348	 0.157	 0.127	
2003	 44.99	 245.26	 153.46	 29.19	 15.82	 15	 0.503	 0.311	 0.164	 0.088	
2004	 0.00	 296.53	 159.65	 29.19	 15.82	 15	 0.509	 0.322	 0.161	 0.130	
2005	 0.00	 290.19	 159.98	 29.19	 15.82	 15	 0.507	 0.312	 0.165	 0.102	
2006	 56.90	 227.80	 173.72	 29.19	 15.82	 15	 0.525	 0.324	 0.162	 0.087	
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2007	 0.00	 294.71	 170.24	 29.19	 15.82	 15	 0.532	 0.341	 0.164	 0.100	
2008	 3.67	 296.22	 145.50	 29.19	 15.82	 15	 0.536	 0.331	 0.158	 0.120	
2009	 51.41	 246.86	 153.65	 29.19	 15.82	 15	 0.504	 0.315	 0.162	 0.130	
2010	 88.51	 226.65	 140.74	 29.19	 15.82	 15	 0.505	 0.308	 0.160	 0.130	
2011	 91.47	 179.83	 165.84	 29.19	 15.82	 15	 0.522	 0.311	 0.165	 0.085	
2012	 0.00	 294.01	 164.07	 29.19	 15.82	 15	 0.523	 0.326	 0.163	 0.130	
2013	 48.17	 259.67	 138.87	 29.19	 15.82	 15	 0.533	 0.320	 0.157	 0.128	
2014	 89.18	 193.92	 153.49	 29.19	 15.82	 15	 0.509	 0.314	 0.157	 0.133	
2015	 96.26	 190.85	 148.57	 29.19	 15.82	 15	 0.549	 0.335	 0.163	 0.072	
2016	 88.09	 187.04	 160.28	 29.19	 15.82	 15	 0.502	 0.302	 0.160	 0.101	
2017	 23.35	 272.47	 160.58	 29.19	 15.82	 15	 0.504	 0.309	 0.164	 0.135	
Mean	 45.55	 248.23	 154.69	 29.19	 15.82	 15	 0.522	 0.323	 0.161	 0.113	
All	 53.79	 235.53	 158.75	 29.19	 15.82	 15	 0.522	 0.323	 0.161	 0.079	

	

Table	A.3	shows	the	total	cost,	marginal	cost	and	the	system	LCOE1	for	each	yearly	optimization	and	for	
the	whole	18-year	long	optimization.		

Table	A.3	Total	cost,	average	marginal	cost	(average	spot	price),	levelized	cost	of	electricity,	load	curtailment	and	storage	

related	losses	of	each	year	

year	 Total	
Cost	
(b€)	

System	LCOE	
(€/MWh)	

Market	
price	
(€/MWh)	

Load	
Curtailmen
t	

Storag
e	
losses	

Curtailment	
+	loss	

2000	 20.23	 47.89	 53.83	 11.64	 5.06	 16.70	
2001	 20.44	 48.40	 54.20	 12.76	 4.87	 17.63	
2002	 19.77	 46.82	 54.60	 10.90	 4.62	 15.12	
2003	 20.83	 49.31	 54.21	 12.38	 3.76	 16.14	
2004	 21.33	 50.51	 56.91	 11.75	 6.43	 18.18	
2005	 21.04	 49.81	 54.18	 11.94	 5.26	 17.20	
2006	 21.82	 51.65	 56.46	 11.99	 6.53	 18.52	
2007	 20.87	 49.40	 55.59	 13.40	 6.14	 19.54	
2008	 20.19	 47.81	 55.23	 11.27	 5.16	 16.43	
2009	 20.71	 49.02	 54.72	 13.02	 4.47	 17.49	
2010	 21.91	 51.87	 57.29	 11.83	 6.30	 18.13	
2011	 21.06	 49.85	 54.43	 10.30	 4.74	 15.04	
2012	 20.87	 49.41	 54.81	 12.67	 5.80	 18.47	
2013	 20.82	 49.28	 55.47	 10.63	 6.01	 16.64	

																																																													

1	 System	 LCOE	 (levelized	 cost	 of	 electricity)	 is	 an	 economic	 assessment	 of	 the	 average	 total	 cost	 to	 build	 and	
operate	an	electricity	system	over	its	lifetime	divided	by	total	electricity	consumption	over	that	lifetime.		
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2014	 20.68	 48.95	 56.90	 10.10	 4.84	 14.94	
2015	 20.29	 48.04	 54.18	 10.12	 4.66	 14.78	
2016	 21.00	 49.72	 56.46	 10.07	 4.67	 14.74	
2017	 21.13	 50.03	 55.43	 12.95	 5.26	 18.21	
Mea
n	

20.83	 49.32	 55.27	 11.65	 5.25	 16.90	

All	 21.33	 50.50	 56.01	 11.52	 5.34	 16.86	

Table	A.4	shows	the	ranking	of	each	weather-year	in	correlation	with	overall	18-year	period.	

Table	A.4	Closest	years	to	the	overall	18-year	period	regarding	to	the	capacity	factor	of	VRE	resources	

	 Closest	year	 Second	closest	year	 Third	closest	year	
Offshore	Wind	 2011	 2012	 2006	
Onshore	Wind	 2006	 2004	 2012	
Solar	PV	 2004	 2006	 2009	
Overall	year	 2006	 2012	 2004	
Overall	error	(absolute)	 0.0150	 0.0236	 0.0280	
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Appendix	4:	the	EOLES	model	

2.1.1.	Sets	and	parameters	

Table	A.5	presents	the	sets	and	indices	of	the	EOLES	model,	Table	A.6	the	parameters.	Throughout	the	
paper,	every	energy	unit	(e.g.	MWh)	or	power	unit	(e.g.	MW)	is	expressed	in	electricity-equivalent.	For	
instance,	 some	energy	 is	 stored	 in	 the	 form	of	methane,	 to	be	 transformed	 later	 into	electricity	using	
open-cycle	natural	gas	plants	with	45%	efficiency.	In	this	case,	when	we	indicate	that	45	="ℎ# 	is	stored	
in	the	natural	gas	network,	it	means	that	100	MWh	of	methane	is	stored,	which	will	allow	45	="ℎ# 		of	
electricity	to	be	generated.	

Table	A.5	Sets	and	indices	of	the	EOLES	model	

Index	 Set	 Description	 	

ℎ	 ∈	H	 Hours		 		

T	 ∈	M	 Months	 		

5GE	 ∈	TEC	 Electricity	generation	and	energy	storage	technologies	 		

ñG2	 ∈	GEN	⊆	TEC	 Electricity	generation	technologies	 		

NJG	 ∈	VRE	⊆	TEC	 Variable	renewable	electricity	generation	technologies	 		

I5J	 ∈	STR	⊆	TEC	 Energy	storage	technologies	 		

2EëTò	 ∈	NCOMB	⊆	TEC	 Non-combustible	generation	technologies	 	

EëTò	 ∈	COMB	⊆	TEC	 Combustible	generation	technologies	 	

CJJ	 ∈	FRR	⊆	TEC	 Dispatchable	technologies	for	secondary	reserves	 		

	

Table	A.6	Parameters	of	the	EOLES	model	

Parameter	 Unit	 Value1	 Description	
Të25ℎℎ	 [-]	 	 A	parameter	to	show	which	month	each	hour	is	in	

																																																													

1	 For	 vectors	 and	 matrices,	 no	 value	 is	 displayed	 in	 the	 Table	 but	 the	 information	 is	 available	 at	
https://github.com/BehrangShirizadeh/EOLES_elecRES.	
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ECNJG,ℎ	 [-]	 	 Hourly	 production	 profiles	 of	 variable	 renewable	
energies	

SGT12Sℎ	 [K"#]	 	 Hourly	electricity	demand	profile	
o1!GT	 [K"ℎ#]	 	 Monthly	extractable	energy	from	lakes	
J4NGJℎ	 [-]	 	 Hourly	run-of-river	capacity	factor	profile	
hNJG	 [-]	 	 Additional	 frequency	 restoration	 requirement	 for	

renewables	because	of	forecast	errors	
.5GE
GH 	 [K"#]	 	 Existing	capacity	by	technology	

12234565GE	 [M€/K"#/year]	 	 Annualized	capital	cost	of	each	technology	
1223456I5J

G2 	 [M€/K"ℎ/year]	 	 Annualized	capital	cost	of	energy	volume	for	storage	
technologies	

E1FGHI5J
Eℎ 	 [M€/K"	/year]	 	 Annualized	 capital	 cost	 of	 storage	 technology	

charging	power		
C&&=I5J

Eℎ 	 [M€/K"	/year]	 	 Fixed	 operation	 and	 maintenance	 cost	 of	 storage	
technology	charging	power		

C&&=5GE	 [M€/K"# 	/year]	 	 Annualized	fixed	operation	and	maintenance	cost	
N&&=5GE	 [M€/K"ℎ#]	 	 Variable	 operation	 and	 maintenance	 cost	 of	 each	

technology	
[I5J
42 	 [-]	 	 Charging	efficiency	of	storage	technologies	
[I5J
ë35	 [-]	 	 Discharging	efficiency	of	storage	technologies	

.ôfpô	 K"# 	 9.3	 Pumping	capacity	for	Pumped	hydro	storage	

GÑöõ
pj/	 K"ℎ# 	 180	 Maximum	energy	 volume	 that	 can	be	 stored	 in	PHS	

reservoirs	
Gs\etj?
pj/ 	 ("ℎ# 	 15	 Maximum	yearly	energy	that	can	be	generated	from	

biogas	
ifA,#@+j\A+m
kejl 	 [-]	 0.01	 Uncertainty	coefficient	for	hourly	electricity	demand	

	iWj@\j+\eA
kejl 	 [-]	 0.1	 Load	variation	factor	

	

2.1.2.	Variables	

The	main	variables	resulting	from	the	optimization	are	presented	in	Table	A.7.	
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Table	A.7	Variables	of	the	EOLES	model	

variable	 Unit	 description	

K+#,,M	 K"ℎ# 	 Hourly	electricity	generation	by	technology	

*+#, 	 K"# 	 Installed	capacity	by	technology	

'(&UVK>?+@,M	 K"ℎ	 Hourly	electricity	entering	each	storage	technology	

'(&U>X?+@,M	 K"ℎ# 	 Hourly	energy	stored	in	each	technology	

'?+@ 	 GW	 Installed	charging	capacity	by	storage	technology	

:&;<=>?+@ 	 K"ℎ	 Energy	capacity	by	storage	technology	
U':g@@,M	 K"# 	 Hourly	upward	frequency	restoration	requirement	

%&'(	 b€	 Overall	final	investment	cost,	annualized	
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Appendix	5:	Transport	cost	of	carbon	dioxide	for	methanation	

The	 cost	 of	 transporting	 carbon	 dioxide	 along	 a	 200km	 onshore	 pipeline	 is	€4/5%&|,	 for	 100km	 ling	
pipeline,	 this	 transporting	 cost	 can	 be	 assumed	 around	 €2/5%&|.	 Given	 that	 each	 mole	 of	 carbon	
dioxide	weighs	 44	 grams,	 and	we	 can	 produce	 one	mole	 of	methane	 from	one	mole	 of	%&|	with	 an	
efficiency	 of	 80%	 and	 each	mole	 of	methane	 can	 produce	 802.3kJ	 of	 thermal	 energy,	 considering	 an	
OCGT	combustion	efficiency	of	45%	(JRC	2014):	

Z	+	Çúù
Zzzzzzz	t	Çúù

×
åå	t	Çúù
Z	pek	Çúù

×
Z	pek	Çúù
z.u	pek	Çöü

×
Z	pek	Çöü
uz|.ê	q†

×
Z	q†	+M

z.zzz|||vvvvu	q°M	+M
×

Z	q°M	+M

z.åw	q°M	#k#,
×
Zzzz	q°M	#k#,

Z	¢°M	#k#,
=

	0.5486
+Çúù

¢°M	#k#,
		

Multiplying	 this	 transport	 cost	 by	 €2/5%&|,	 the	 %&|	 transport	 cost	 for	 methanation	 becomes	
€1.0972/="ℎ.	
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Appendix	6:	Cost	decomposition	

Figure	A.1	shows	the	share	of	each	technology	in	overall	cost	of	power	system	(except	distribution	and	
transmission	costs);	

	

Figure	A.1.	Overall	decomposition	of	the	system	cost	in	percentage	for	the	reference	cost	scenario	
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Appendix	7:	Additional	information	

In	Table	A.8	we	summarize	the	yearly	power	production	LCOE	(the	levelized	cost	of	electricity	produced	
from	each	 power	 plant	without	 considering	 any	 future	 load	 curtailment	 or	 other	 losses)	 and	 average	
selling	price	 for	each	generation	 technology	and	LCOS	 (levelized	cost	of	 storage;	cf.	 Jülch	et	al.,	2015)	
and	the	average	selling	price	of	each	storage	technology	for	weather-year	2006.		

Table	A.8	LCOE/LCOS	and	average	price	of	electricity	sold	and	bought	and	unit	profit	for	each	technology,	for	weather-year	2006	

Prices	
(€/="ℎ#)	

Offsho
re	

Onshore	 PV	 Lake	 River	 Biogas	 Battery	 PHS	 Methanation	

LCOE/LCOS	 41.58	 39.45	 27.60	 100.00	 40.80	 82.00	 83.65	 16.80	 109.36	

Average	 price	
of	energy	sold						

41.68	 39.60	 28.00	 136.90	 55.10	 140.24*	 98.00	 89.10	 140.24*	

Average	price	
paid	for	energy		

-	 -	 -	 -	 -	 -	 21.53	 23.76	 27.90	

Unit	profit		 0.10	 0.15	 0.40	 36.90	 14.30	 58.24	 -7.18	 48.54	 2.98	

*	Price	of	gas	sold,	converted	into	electricity-equivalent	by	dividing	the	gas	price	by	the	energy	efficiency	of	OCGTs.	

For	 all	 power	 production	 technologies,	 the	 average	market	 selling	 price	 is	 higher	 than	 the	 LCOE,	 the	
difference	 being	 very	 low	 for	 the	 VRE	 resources	 (offshore	 wind	 ~€0.10/="ℎ#,	 onshore	 wind	
~€0.15/="ℎ# 	 and	 solar	 PV	 ~€0.40/="ℎ#)	 while	 for	 the	 other	 technologies	 this	 difference	 is	much	
greater,	 especially	 for	 biogas	 (€44.40/="ℎ#).	 The	 profitability	 of	 hydro	 is	 due	 to	 the	 capacity	
constraint,	while	 for	 biogas	 it	 is	 due	 to	 the	 production	 constraint,	 since	 these	 constraints	 generate	 a	
scarcity	rent.	

While	 the	profitability	analysis	 is	 straightforward	 for	all	 the	power	production	 technologies,	 it	 is	more	
complicated	for	the	storage	technologies	since	they	buy	electricity	from	the	market,	and	there	are	losses	
related	 to	charging	and	discharging	 inefficiencies.	Equation	 (17)	 shows	 the	profitability	criteria	 for	 the	
storage	technologies	in	the	calculation	of	unit	profit:	 	

FJëC45?+@
fA\+ = (K?+@,M×FM

pj@q#+)M − ('(&UVK>?+@,M×FM
pj@q#+)M − (*?+@× %1FGH?+@ + C&&=?+@ +

:&;<=>?+@×%1FGH?+@
#A + K?+@,M×N&&=?+@ )M / K?+@,MM 	 (17)	

Where	FM
pj@q#+	is	the	market	price	of	electricity	at	hour	ℎ	and	FJëC45?+@fA\+	is	the	net	profit	of	the	unit	of	

electricity	 bought	 by	 the	 storage	 units,	 charged	 and	 sold	 on	 the	 electricity	 market	 (accounting	 for	
storage-related	 inefficiencies),	 which	 can	 be	 considered	 as	 the	 net	 present	 value	 of	 each	 storage	
technology	per	unit	of	power	sold.		
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PHS	is	highly	profitable	because	its	capacity	is	 limited,	which	generates	a	scarcity	rent.	Conversely,	the	
profitability	of	batteries	is	negative	because	the	FRR	requirement	leads	to	a	higher	battery	capacity	(by	a	
factor	of	approximately	two).	

	




