An assessment of Earth’s climate
sensitivity using multiple lines of
evidence

Reviews of Geophysics, American Geophysical Union, 2020

Authors: S. Sherwood?!, M.J. Webb?, J.D. Annan3, K.C. Armour?, P.M. Forster®, J.C.
Hargreaves?®, G. Hegerl®, S. A. Klein’, K.D. Marvel®2°, E.J. Rohling®1°, M.
Watanabell, T. Andrews?, P. Braconnot!?, C.S. Bretherton*, G.L. Foster??, Z.
Hausfather!3, A.S. von der Heydt!4, R. Knutti!®, T. Mauritsen'®, J.R. Norris'’, C.
Proistosescu®, M. Rugenstein'®, G.A. Schmidt?°, K.B. Tokarska®*°, M.D. Zelinka’.

This article has been accepted for publication and undergone full peer review but has not been
through the copyediting, typesetting, pagination and proofreading process which may lead to
differences between this version and the Version of Record. Please cite this article as doi:
10.1029/2019RG000678

Key Points:

e We assess evidence relevant to Earth’s climate sensitivity S: feedback process understanding, and the
historical and paleo-climate records.

e All three lines of evidence are difficult to reconcile with S < 2 K, while paleo evidence provides the
strongest case against S > 4.5 K.

e A Bayesian calculation finds a 66% range of 2.6-3.9 K, which remains within the bounds 2.3-4.5 K under
plausible robustness tests.
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Abstract

We assess evidence relevant to Earth’s equilibrium climate sensitivity per doubling of
atmospheric COz2, characterized by an effective sensitivity S. This evidence includes
feedback process understanding, the historical climate record, and the paleoclimate
record. An S value lower than 2 K is difficult to reconcile with any of the three lines of
evidence. The amount of cooling during the Last Glacial Maximum provides strong
evidence against values of S greater than 4.5 K. Other lines of evidence in
combination also show that this is relatively unlikely. We use a Bayesian approach to
produce a probability density (PDF) for S given all the evidence, including tests of
robustness to difficult-to-quantify uncertainties and different priors. The 66% range is
2.6-3.9 K for our Baseline calculation, and remains within 2.3-4.5 K under the
robustness tests; corresponding 5-95% ranges are 2.3-4.7 K, bounded by 2.0-5.7 K
(although such high  -confidence ranges should be regarded more cautiously). This
indicates a stronger constraint on S than reported in past assessments, by lifting the
low end of the range. This narrowing occurs because the three lines of evidence
agree and are judged to be largely independent, and because of greater confidence
in understanding feedback processes and in combining evidence. We identify
promising avenues for further narrowing the range in S, in particular using
comprehensive models and process understanding to address limitations in the
traditional forcing-feedback paradigm for interpreting past changes.

Plain Language Summary

Earth’s global “climate sensitivity” is a fundamental quantitative measure of the susceptibility
of Earth’s climate to human influence. A landmark report in 1979 concluded that it probably
lies between 1.5-4.5°C per doubling of atmospheric carbon dioxide, assuming that other
influences on climate remain unchanged. In the 40 years since, it has appeared difficult to
reduce this uncertainty range. In this report we thoroughly assess all lines of evidence
including some new developments. We find that a large volume of consistent evidence now
points to a more confident view of a climate sensitivity near the middle or upper part of this
range. In particular, it now appears extremely unlikely that the climate sensitivity could be
low enough to avoid substantial climate change (well in excess of 2°C warming) under a
high-emissions future scenario. We remain unable to rule out that the sensitivity could be
above 4.5°C per doubling of carbon dioxide levels, although this is not likely. Continued
research is needed to further reduce the uncertainty and we identify some of the more
promising possibilities in this regard.



1 Introduction

Earth’s equilibrium climate sensitivity (ECS), defined generally as the steady-state global
temperature increase for a doubling of CO;, has long been taken as the starting point for
understanding global climate changes. It was quantified specifically by Charney et al.
(National Research Council, 1979) as the equilibrium warming as seen in a model with ice
sheets and vegetation fixed at present-day values. Those authors proposed a range of 1.5-
4.5 K based on the information at the time, but did not attempt to quantify the probability that
the sensitivity was inside or outside this range. The most recent report by the
Intergovernmental Panel on Climate Change (Stocker et al., 2013) asserted the same now-
familiar range, but more precisely dubbed it a >66% (“likely”) credible interval, implying an up
to one in three chance of being outside that range. It has been estimated that—in an ideal
world where the information would lead to optimal policy responses—halving the uncertainty
in a measure of climate sensitivity would lead to an average savings of US$10 trillion in
today’s dollars (Hope, 2015). Apart from this, the sensitivity of the world’s climate to external
influence is a key piece of knowledge that humanity should have at its fingertips. So how can
we narrow this range?

Quantifying ECS is challenging because the available evidence consists of diverse strands,
none of which is conclusive by itself. This requires that the strands be combined in some
way. Yet, because the underlying science spans many disciplines within the Earth Sciences,
individual scientists generally only fully understand one or a few of the strands. Moreover,
the interpretation of each strand requires structural assumptions that cannot be proven, and
sometimes ECS measures have been estimated from each strand that are not fully
equivalent. This complexity and uncertainty thwarts rigorous, definitive calculations and
gives expert judgment and assumptions a potentially large role.

Our assessment was undertaken under the auspices of the World Climate Research
Programme's Grand Science Challenge on Clouds, Circulation and Climate Sensitivity
following a 2015 workshop at Ringberg Castle in Germany. It tackles the above issues,
addressing three questions:

1) Given all the information we now have, acknowledging and respecting the
uncertainties, how likely are very high or very low climate sensitivities, i.e., outside
the presently accepted likely range of 1.5-4.5 K (IPCC, 2013)?

2) What is the strongest evidence against very high or very low values?
3) Where is there potential to reduce the uncertainty?

In addressing these questions, we broadly follow the example of Stevens et al. (2016,
hereafter SSBW16) who laid out a strategy for combining lines of evidence and transparently
considering uncertainties. The lines of evidence we consider, as in SSBW16, are modern
observations and models of system variability and feedback processes; the rate and
trajectory of historical warming; and the paleoclimate record. The core of the combination
strategy is to lay out all the circumstances that would have to hold for the climate sensitivity



to be very low or high given all the evidence (which SSBW16 call “storylines”). A formal
assessment enables quantitative probability statements given all evidence and a prior
distribution, but the “storyline” approach allows readers to draw their own conclusions about
how likely the storylines are, and points naturally to areas with greatest potential for further
progress. Recognizing that expert judgment is unavoidable, we attempt to incorporate it in a
transparent and consistent way (e.g., Oppenheimer et al., 2016).

Combining multiple lines of evidence will increase our confidence and tighten the range of
likely ECS if the lines of evidence are broadly consistent. If uncertainty is underestimated in
any individual line of evidence—inappropriately ruling out or discounting part of the ECS
range—this will make an important difference to the final outcome (see example in Knutti et
al., 2017). Therefore, it is vital to seek a comprehensive estimate of the uncertainty of each
line of evidence that accounts for the risk of unexpected errors or influences on the
evidence. This must ultimately be done subjectively. We will therefore explore the
uncertainty via sensitivity tests and by considering ‘what if’ cases in the sense of SSBW16,
including what happens if an entire line of evidence is dismissed.

The most recent reviews (Collins et al., 2013, Knutti et al., 2017) have considered the same
three main lines of evidence considered here, and have noted they are broadly consistent
with one another, but did not attempt a formal quantification of the PDF of ECS. Formal
Bayesian quantifications have been done based on the historical warming record (see
Bodman and Jones 2016 for a recent review), the paleoclimate record (PALAEOSENS,
2012), a combination of historical and last millennium records (Hegerl et al., 2006), and
multiple lines of evidence from instrumental and paleo records (Annan and Hargreaves,
2006). An assessment based only on a subset of the evidence will yield too wide a range if
the excluded evidence is consistent (e.g. Annan and Hargreaves, 2006), but if both subsets
rely on similar information or assumptions, this co-dependence must be considered when
combining them (Knutti and Hegerl 2008). Therefore, an important aspect of our assessment
is to explicitly assess how uncertainties could affect more than one line of evidence (cf.
section 6), and to assess the sensitivity of calculated PDFs to reasonable allowance for
interdependencies of the evidence.

Another key aspect of our assessment is that we explicitly consider process understanding
via modern observations and process models as a newly robust line of evidence (section 3).
Such knowledge has occasionally been incorporated implicitly (via the prior on ECS) based
on the sample distribution of ECS in available climate models (Annan and Hargreaves,
2006) or expert judgments (Forest et al., 2002), but climate models and expert judgments do
not fully represent existing knowledge or uncertainty relevant to climate feedbacks, nor are
they fully independent of other evidence (in particular that from the historical temperature
record, see Kiehl, 2007). Process understanding has recently blossomed, however, to the
point where substantial statements can be made without simply relying on climate model
representations of feedback processes, creating a new opportunity exploited here.

Climate models (specifically general circulation models, or GCMs) nonetheless play an
increasing role in calculating what our observational data would look like under various
hypothetical ECS values—in effect translating from evidence to ECS. Their use in this role is
now challenging long-held assumptions, for example showing that 20th-century warming
could have been relatively weak even if ECS were high (section 4), that paleoclimate



changes are strongly affected by factors other than CO,, and that climate may become more
sensitive to greenhouse gases in warmer states (section 5). GCMs are also crucial for
confirming how modern observations of feedback processes are related to ECS (section 3).
Accordingly, another novel feature of this assessment will be to use GCMs to refine our
expectations of what observations should accompany any given value of ECS and thereby
avoid biases now evident in some estimates of ECS based on the historical record using
simple energy budget or energy balance model arguments. GCMs are also used to link
global feedback strengths to observable phenomena. However, for reasons noted above, we
avoid relying on GCMs to tell us what values to expect for key feedbacks except where the
feedback mechanisms can be calibrated against other evidence. Since we use GCMs in
some way to help interpret all lines of evidence, we must be mindful that any errors in doing
this could reinforce across lines (see section 6.2).

We emphasize that this assessment begins with the evidence on which previous studies
were based, including new evidence not used previously, and aims to comprehensively
synthesize the implications for climate sensitivity both by drawing on key literature and by
doing new calculations. In doing this, we will identify structural uncertainties that have
caused previous studies to report different ranges of ECS from (essentially) the same
evidence, and account for this when assessing what that underlying evidence can tell us.

An issue with past studies is that different or vague definitions of ECS may have led to
perceived, unphysical discrepancies in estimates of ECS that hampered abilities to constrain
its range and progress understanding. Bringing all the evidence to bear in a consistent way
requires using a specific measure of ECS, so that all lines of evidence are linked to the same
underlying quantity. We denote this quantity S (see section 2.1). The implications for S of the
three strands of evidence are examined separately in sections 3-5, and anticipated
dependencies between them are discussed in section 6. To obtain a quantitative PDF of S,
we follow SSBW16 and many other studies by adopting a Bayesian formalism, which is
outlined in sections 2.2-2.6. The results of applying this to the evidence are presented in
section 7, along with the implications of our results for other measures of climate sensitivity
and for future warming. The overall conclusions of our assessment are presented in section
8. We note that no single metric such as S can fully describe or predict climate responses,
and we discuss its limitations in section 8.2, as well as implications of our work for future
research.

While we endeavor to write for a broad audience, it is necessary to dip into technical detail in
order to support the reasoning and conclusions, and some of the methods used are novel
and require explanation. We have therefore structured this assessment so that the
discussions of the three lines of evidence (sections 3-5) are quasi-independent, with
separate introductions, detailed analyses, and conclusions. Readers who are not interested
in the details can gain an overview of the key points from the concluding portions of these
sections. Likewise, readers not interested in details of the statistical method could skip most
of section 2 and focus on the “storylines” presented in sections 3-5. The probabilities given
in section 7 derive from the statistical method, but the independence issues discussed in
section 6 are important for either quantitative or qualitative assessment of the evidence.



2. Methods

This section first explains the measure of ECS we will use and how it relates to others
(section 2.1), then presents the simple physical model used to interpret evidence (section
2.2). Section 2.3 summarizes the overall methodology, and section 2.4 goes over this in
more detail, beginning with a basic review of Bayesian inference intended mainly for those
new to the topic while focusing on concepts relevant to the ECS problem (section 2.4.1),
then working through the solution of the model and sampling approach (sections 2.4.2-
2.4.4). For other basic introductions to Bayesian inference, see Stone (2012) or Gelman et
al. (2013).

2.1 Measures of climate sensitivity

Climate sensitivity is typically quantified as warming per doubling of CO,, but this is by
tradition. One could also consider the warming per unit radiative forcing, or the increment of
additional net power exported to space per unit warming (the feedback parameter, i.e,
energetic “spring constant” of the system) denoted A. Indeed (see sections 2.2 and later) we
will find it easier to write our evidence in terms of A rather than warming-per-doubling (ECS),
making the definition of an ECS optional. One can imagine a range of CO; forcing scenarios,
each yielding its own value for the ECS; each such scenario also implies a matching value
for A. Our approach simultaneously constrains both A and S (see section 2.3).

In choosing the reference scenario to define sensitivity for this assessment, for practical
reasons we depart from the traditional Charney ECS definition (equilibrium response with ice
sheets and vegetation assumed fixed) in favor of a comparable and widely used, so-called
“effective climate sensitivity” S derived from system behavior during the first 150 years
following a (hypothetical) sudden quadrupling of CO,. During this time the system is not in
equilibrium, but regression of global-mean top-of-atmosphere energy imbalance onto global-
mean near-surface air temperature, extrapolated to zero imbalance, yields an estimate of the
long-term warming valid if the average feedbacks active during the first 150 years persisted
to equilibrium (Gregory et al., 2004). This quantity therefore approximates the long-term
Charney ECS (e.g., Danabasoglu and Gent, 2009), though how well it does so is a matter of
active investigation addressed below. Our reference scenario does not formally exclude any
feedback process, but the 150-year time frame minimizes slow feedbacks (especially ice
sheet changes).

This choice involves weighing competing issues. Crucially, effective sensitivity (or other
measures based on behavior within a century or two of applying the forcing) is more relevant
to the time scales of greatest interest (i.e., the next century) than is equilibrium sensitivity,
and effective sensitivity has been found to be strongly correlated (r=0.95) with the magnitude
of model-simulated 21st-century warming under a high-emission scenario (Gregory et al.,
2015, Grose et al., 2017, 2018). It is also widely available from climate models (e.g.,
Andrews et al., 2012) which facilitates many steps in our analysis. All candidate climate
sensitivity measures are based on an outcome of a hypothetical scenario never realized on
Earth. Ultimately models or theory are required to relate the outcome of any one scenario to



that of any other. The ideal measure S is one that is as closely related as possible to
scenarios of practical interest: those which produced evidence (e.g., the historical CO; rise),
or which might occur in the future. Effective sensitivity is a compromise that is relatively well
related to both the available  past evidence and projected  future warmings

The Transient Climate Response (TCR, or warming at the time of CO. doubling in an
idealized 1% per year increase scenario), has been proposed as a better measure of
warming over the near- to medium-term; it may be more generally related to peak warming,
and better constrained (in absolute terms) by historical warming, than S (Frame et al., 2005;
Froelicher et al., 2013). It may also be better at predicting high-latitude warming (Grose et
al., 2017). But as mentioned above, 21st-century global-mean trends under high emissions
are better predicted by S than by TCR, perhaps because of nonlinearities in forcing or
response (Gregory et al., 2015) or because TCR estimates are affected by noise
(Sanderson, 2020). TCR is also less directly related to the other lines of evidence than is S.
In this study we will briefly address TCR in sections 4 and 7.4, but will not undertake a
detailed assessment.

The IPCC (at least through AR5) formally retains a definition of ECS based on long-term
equilibrium. Much of the information they use to quantify ECS however exploits GCM
calculations of effective (e.g., Andrews et al., 2012), not equilibrium, sensitivity, and it
appears that the distinction is often overlooked. In this report, we will use “long-term” to
describe processes and responses involved in the effective sensitivity S, and “equilibrium”
for the fully equilibrated ECS. The ECS differs from S due to responses involving the deep
ocean, atmospheric composition and land surface that emerge on centennial time scales
(e.g., Frey and Kay, 2018; see section 5), though calculations here (following Charney and
past IPCC reports) do not include ice-sheet changes.

To calculate the ECS in a fully coupled climate model requires very long integrations (>1000
years). Fortunately, a recent intercomparison project (LongrunMIP; Rugenstein et al., 2019a)
has organized long simulations from enough models to now give a reasonable idea of how
ECS and S are likely to be related.

Relationships between S and several other quantities are shown in Fig. 1~ from available
models. Predicted S is reasonably well correlated with the other sensitivity measures (Fig. 1
a), indicating that S is a useful measure, but also that the conclusions of this assessment
would still hold if another measure were used. Note that we do not consider here all possible
measures; see Rugenstein et al. (2019b) for a discussion of some additional ones, which
also generally correlate well with S. S is less well correlated to TCR (r=0.81) than to ECS
(r=0.94), as expected since the TCR is sensitive to ocean heat uptake efficiency as well as
to A.

Although the measures correlate well, all available LongRunMIP models equilibrate to a
higher warming at 4xCO, than S from the same simulation (Fig. 1 a, small symbols;
details of how the equilibrium is estimated are given in Rugenstein et al. (2019a,b). The
median equilibrium warming per doubling at 4xCO; is 17% higher than the median S,
suggesting a robust amplifying impact of processes too slow to emerge in the first 150 years.
This occurs due to responses of the climate system on multidecadal to millennial time
scales, including “pattern effects” from differences between ocean surface warming patterns



that have not fully equilibrated within the first century or two (sections 3.3.2, 4.2); slow
responses of vegetation; and temperature dependence of feedbacks. Evidence also shows,
however (section 5.2.3), that sensitivity to two doublings (as assumed for S) is somewhat
greater than that to one doubling. This state-dependence partly cancels out the low bias in
the 150-year regression, leading to an ECS (for one doubling) that averages only 6% greater
than S over the simulations, although the ratio of the two is uncertain so we assign an
uncertainty of +20% (about 50%  wider than the sample standard deviation in the
available GCMs). Thus, statements about S in this assessment can also be interpreted, to
relatively good approximation, as statements about ECS for one doubling of CO,. (We use
the symbol ¢ to represent this difference, with 1+ therefore being the ratio of our target S to
the long-term equilibrium.)

Fig. 1 b shows the relationships of S to future warming. The warming trend over the 21st
century (Fig. 1  b) is also well correlated with S, especially for the highest-emission
scenario RCP8.5. The correlations are not quite as strong for the weaker-forcing cases,
suggesting that global temperature changes are harder to predict (in a relative sense) in
more highly mitigated scenarios. This is mostly due to a weaker warming signal, but there is
also a slightly greater model spread, reasons for which are not currently understood.

To conclude, the effective sensitivity S that we will use—a linear approximation to the
equilibrium warming based on the first 150 years after an abrupt CO, quadrupling—is a
practical option for measuring sensitivity, based on climate system behavior over the most
relevant time frame while still approximating the traditional ECS. Moreover, the quantitative
difference between this and the traditional equilibrium measure based on a CO, doubling
(with fixed ice sheets) appears to be small, albeit uncertain. This uncertainty is skewed, in
the sense that long-term ECS could be substantially higher than S but is very unlikely to be
substantially lower. Further work is needed to better understand and constrain this
uncertainty.

2.2 Physical model

Here we review the equations that will be used to relate the evidence to the key unknowns.
According to the conventional forcing-feedback theory of the climate system, the net
downward radiation imbalance AN at the top-of-atmosphere (TOA) can be decomposed into
a radiative forcing AF, a radiative response AR due directly or indirectly to forced changes in
temperature which is the feedback, and variability V unrelated to the forcing or feedback:

AN = AF + AR +V (1
)

Variability V can arise due to unforced variations in upwelling of cold water to the surface,
cloud cover, albedo, etc. The net radiation balance AN consists of the net absorbed
shortwave (SW) solar radiation minus the planet’s emission of longwave (LW) radiation.
Taking the radiative response AR as proportional to first order to the forced change in global
mean surface air temperature AT, equation (1 ) becomes



AN = AF + AAT +V (
2)

where the climate feedback parameter A is defined as the sensitivity of the net TOA
downward radiation N to T, dN/dt, (at fixed F). If this feedback parameter is negative, the
system is stable.

In equilibrium over sufficiently long time-scales (assuming A<0) the net radiation imbalance
AN and mean unforced variability V will each be negligible, leaving a balance between the
(constant) forcing AF and radiative response AR. In this case equation (  2) can be written

AT = —AF /A (
3)

The case of a doubling of CO, defines the climate sensitivity

S X
AF, COZ, (
I)

where AFaco2 is defined as the radiative forcing per CO» doubling (noting that since our
reference scenario involves two doublings, AF2«co2 is defined as half the effective forcing in
that scenario). Estimation of this quantity is discussed in section 3.2.1. Note that while the
above equations assume equilibrium, our reference scenario (section 2.1) is not an
equilibrium scenario; however, because in this scenario AN is zero (by construction) at the
time of the projected equilibrium warming AT, these equations still hold.

Finally we note that the total system feedback A can be decomposed into the additive effect
of multiple feedbacks in the system of strengths A;,

A=A (
5)

These feedbacks represent how the TOA radiation balance is altered as the climate warms
by forced changes in identified radiatively active constituents of the climate system. In this
study these are represented as six feedback components: the Planck feedback, combined
water vapor and lapse rate feedback, total cloud feedback, surface albedo feedback,
stratospheric feedback and an additional atmospheric composition feedback. These
individual feedback components are elaborated in section 3, where evidence is presented to
constrain each of them (sections 3.3, 3.4; Table 1). Other process evidence is presented
(section 3.5) which constrains the total, A. Finally, so-called “emergent-constraint” studies
are discussed (section 3.6) which tie S to some observable in the present-day climate,
thereby constraining A and S. For reasons discussed later however they are not used in our
Baseline calculation, but are explored via a sensitivity test.

The other evidence used (sections 4, 5) comes from past climate changes and typically is
interpretedviaeq s.( 2, 3) in previous climate sensitivity studies. These have
typically assumed that the equations apply to any relevant climate change with universal
values of A and S, provided that the same feedbacks are counted therein (cf.eq .( 5)).



We will likewise apply these equations simultaneously to different past climate change
scenarios, leading to a set of relationships shown graphically in Figure 2 (which offers a
picture of our overall model, in particular its dependence structure; see section 2.4.2 for
more information).

Recent work however has shown that effective A (the value that satisfies eq. ( 2) for some
climate-change scenario) can vary significantly across scenarios even when the same
feedbacks are nominally operating. All measurements relevant to climate sensitivity come
from the recent historical period (during which internal variability may play a large role and
the climate is far out of equilibrium; section 4) or from proxy reconstructions of past climate
equilibria (during which the climate may have been quite different to that of the reference
scenario; section 5). Thus, possible variations in the apparent A during those time periods
must be accounted for. Two particular issues are recognized. First, feedbacks can change
strength in different climate states due to direct dependence on global temperature or
indirect dependence (e.g. via snow or ice cover), or other differences in the earth system
(e.g., topography). Second, the net outgoing radiation AN can depend not only on the global
mean surface temperature but also on its geographic pattern AT’, leading to an apparent
dependence of A on AT’ w